Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (4): 919-924    DOI: 10.11720/wtyht.2019.1098
     工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于冲击回波法的预应力管道压浆密实性检测
渠广镇1,2, 周广利2, 张科超3, 王彦伟2
1. 长安大学 公路学院,陕西 西安 710064
2. 山东省交通科学研究院,山东 济南 250014
3. 交通运输部 公路科学研究院,北京 100088
The detection of grouting compactness of pre-stressed ducts based on the impact-echo method
Guang-Zhen QU1,2, Guang-Li ZHOU2, Ke-Chao ZHANG3, Yan-Wei WANG2
1. School of Highway,Chang'an University,Xi'an 710064,China
2. Shandong Transportation Institute,Jinan 250014,China
3. Research Institute of Highway Ministry of Transport,Beijing 100088,China
全文: PDF(1804 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

首先阐述冲击回波检测方法的原理,然后通过制作试验模型构件模拟了预应力管道由空到密实的四种工况,采用冲击回波法对管道预应力注浆质量进行检测,得出如下结论:随着灌浆密实的增加,板底反射时刻和板名义厚度逐渐减小;从腹板半空方向测试,反射时刻和板名义厚度最大,管道密实的底部反射时刻和无管道处的反射时刻基本相当。最后提出预应力管道压浆中易于出现不密实的部位。通过工程实例验证了该方法的可靠性,在预应力管道损伤检测中具有一定的实用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
渠广镇
周广利
张科超
王彦伟
关键词 预应力管道冲击回波法灌浆密实度    
Abstract

A detailed description of impact-echo method was given firstly,then four different situations of grouting quality were modified from empty to dense through making test model.After that,the impact-echo method was adopted to detect the grouting quality of tendon ducts.The study was summarized as follows:If the reflection time of slab bottom and nominal thickness of slab increased,the degree of density would increase;the reflection time and nominal thickness of slab was the biggest when testing was from half-hole of web.At the same time,the reflection time of compacted and uncompacted tendon ducts was basically the same.In the end,the uncompacted parts of the prestressed pipe grouting were put forward.The method was verified by the engineering project and was proved to be of reference value.

Key wordspre-stressed duct    impact-echo method    grouting compactness
收稿日期: 2018-03-09      出版日期: 2019-08-15
:  P631.4  
基金资助:山东交通科技创新项目(2015B48)
作者简介: 渠广镇(1985-),男,山东郓城人,工学博士研究生,高级工程师,主要研究方向为在役桥梁检测评定。Email: 286824872@qq.com
引用本文:   
渠广镇, 周广利, 张科超, 王彦伟. 基于冲击回波法的预应力管道压浆密实性检测[J]. 物探与化探, 2019, 43(4): 919-924.
Guang-Zhen QU, Guang-Li ZHOU, Ke-Chao ZHANG, Yan-Wei WANG. The detection of grouting compactness of pre-stressed ducts based on the impact-echo method. Geophysical and Geochemical Exploration, 2019, 43(4): 919-924.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1098      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I4/919
Fig.1  冲击回波法示意
Fig.2  3种预应力管道冲击回波响应
Fig.3  预应力混凝土梁多功能检测仪
构件厚度b b≤20 cm 20 cm<b≤40 cm 40 cm<b≤60 cm
首选激振锤直径Dxx D10 D17 D17
备选激振锤直径Dxx D17 D10 D30
Table 1  激振锤直径选择
Fig.4  试验模型
a—模型尺寸;b—模型实体
Fig.5  激振方向
a—顶板方向激振;b—腹板方向激振
Fig.6  试件无管道处时域及卓越周期
a—测点时域曲线;b—测点MEM卓越周期
Fig.7  试件顶板方向激振时域及卓越周期
a—测点时域曲线;b—测点MEM卓越周期
工况类型 顶部反射时刻
t1/ms
底部反射时刻
t2/ms
d/cm D/cm D中和密实
管道差率
1 密实 0.094 0.116 8.3 20.4 /
2 顶板半空 0.096 0.121 8.5 21.4 4.9%
3 全空 0.100 0.123 8.8 21.7 6.4%
4 腹板半空 0.104 0.125 9.7 23.5 15.2%
Table 2  各缺陷类型结果汇总
Fig.8  测线布置示意
Fig.9  管道灌浆不密实钻孔验证
[1] 邹春江, 陈征宇, 董平 , 等. 冲击回波主频对箱梁预应力孔道注浆饱满度的响应及应用[J]. 公路交通科技, 2010,27(1):72-77.
[1] Zou C J, Chen Z Y, Dong P , et al. Impact-echo characteristic frequencies response to grouting fullness in ducts of prestressed box beam and application[J]. Journal of Highway and Transportation Research and Development, 2010,27(1):72-77.
[2] 朱自强, 密士文, 鲁光银 , 等. 金属预应力管道注浆质量超声检测数值模拟研究[J]. 中南大学学报:自然科学版, 2012,43(12):4888-4894.
[2] Zhu Z Q, Mi S W, Lu G Y , et al. Numerical simulation of detecting grouting quality of pre-stressed metallic tendon ducts through ultrasonic[J]. Journal of Central South University:Science and Technology, 2012,43(12):4888-4894.
[3] 朱自强, 喻波, 密士文 , 等. 预应力管道压浆质量的超声波相控阵检测方法[J]. 中南大学学报:自然科学版, 2014,45(10):3521-3530.
[3] Zhu Z Q, Yu B, Mi S W , et al. Detection of grouting quality in posttensioned tendon duct by phased array ultrasonic[J]. Journal of Central South University:Science and Technology, 2014,45(10):3521-3530.
[4] 曹慧珺, 孙巍, 龚育龄 , 等. 冲击回波法在桥梁预应力管道灌浆质量检测中的应用分析[J]. 工程地球物理学报, 2017,14(5):578-585.
[4] Cao H J, Sun W, Gong Y L , et al. Application of impact echo method to quality inspection of prestressed ducts grouting in bridges[J]. Chinese Journal of Engineering Geophysics, 2017,14(5):578-585.
[5] 吴佳晔, 杨超, 季文洪 , 等. 预应力管道灌浆质量检测方法的现状和进展[J]. 四川理工学院学报:自然科学版, 2010,23(5):500-503.
[5] Wu J Y, Yang C, Ji W H , et al. Comparison of test methods for bolt & anchor filling percentage[J]. Journal of Sichuan Universitu of Science & Engineering:Natural Sicence Edition, 2010,23(5):500-503.
[6] Sansalone M, Carino N J . Impact-echo method[M]. USA: Concrete International, 1988: 38-46.
[7] 王智丰, 周先雁, 晏班夫 , 等. 冲击回波法检测预应力束孔管道压浆质量[J]. 振动与冲击, 2009,28(1):166-169.
[7] Wang Z F, Zhou X Y, Yan B F , et al. Grout quality testing in prestressed ducts with impact-echo method[J]. Journal of Vibration and Shock, 2009,28(1):166-169.
[8] 徐宏武, 唐文洋, 刘大昌 , 等. 基于冲击回波等效厚度法的预应力管道压浆密实度无损检测技术研究[J]. 公路交通技术, 2017,33(4):43-47.
[8] Xu H W, Tang W Y, Liu D C , et al. Nondestructive detection technology of prestressed pipe grouting density based on impact echo equivalent thickness method[J]. Technology of Highway and Transport, 2017,33(4):43-47.
[9] 姚华 . 扫描式冲击回波法检测后张预应力孔道内缺陷的模型试验研究[D]. 重庆:重庆交通大学, 2008.
[9] Yao H . Model test study on defect detection in post-tensioned prestressed channel by scanning impact-echo method[D]. Chongqing:Chongqing Jiaotong University, 2008.
[10] 尹洪正 . 预应力混凝土梁灌浆密实度无损检测的研究[D]. 南京:东南大学, 2015.
[10] Yin H Z . Non-destructive testing of grouting density of prestressed concrete beams[D]. Nanjing:Southeast University, 2015.
[11] 周先雁, 栾健, 王智丰 . 桥梁箱梁孔道灌浆质量检测中冲击回波法的应用[J]. 中南林业科技大学学报, 2010,30(10):78-82.
[11] Zhou X Y, Luan J, Wang Z F . Inspecting grouting quality of per-stressed duct of bridge box girder by impact-echo method[J]. Journal of Central South University of Forestry Science and Technology, 2010,30(10):78-82.
[12] Abraham O, Cote P . Impact-echo thickness frequency profiles for detection of voids in tendon ducts[J]. ACI Structural Journal, 2002,99(3).
[13] 陈卫华 . 基于冲击回波法的箱梁预应力管道压浆典型缺陷检测[J]. 清远职业技术学院学报, 2017,10(4):46-51.
[13] Chen W H . Detecting grouting quality of tendon ducts of prestressed box girder using impact-echo method[J]. Journal of Qingyuan Polytechnic, 2017,10(4):46-51.
[14] 王伟, 水中和, 王桂明 , 等. 冲击回波法检测波纹管灌浆质量的研究及工程实践[J]. 混凝土, 2010,247(5):134-137.
[14] Wang W, Shui Z H, Wang G M , et al. Quality detects of bellows grouting by means of impact echo method and application[J]. Concrete, 2010,247(5):134-137.
[15] 宁建国, 黄新, 曲华 , 等. 冲击回波法检测混凝土结构[J]. 中国矿业大学学报, 2004,33(6):703-707.
[15] Ning J G, Huang X, Qu H , et al. Nondestructive testing of concrete structures using impact-echo method[J]. Journal of China University of Mining & Technology, 2004,33(6):703-707.
[16] 周先雁, 王智丰, 晏班夫 . 预应力管道压浆质量无损检测方法[J]. 中国公路学报, 2011,24(6):64-71.
[16] Zhou X Y, Wang Z F, Yan B F . Nondestructive testing method of grouting quality for prestressed pipe[J]. China Journal of Highway and Transport, 2011,24(6):64-71.
[17] 吴新旋 . 混凝土无损检测技术手册[M]. 北京: 人民交通出版社, 2003.
[17] Wu X X. Technical manual for nondestructive testing of concrete[M]. Beijing: People's Communications Press, 2003.
[18] 马国峰 . 基于冲击回波等效波速法的管道压浆密实度无损检测技术研究[J]. 铁道建筑, 2017,( 2):26-29.
[18] Ma G F . Research on non-destruction technology method based on impact echo equivalent velocity used for inspecting pipe grouting compactness[J]. Railway Engineering, 2017,( 2):26-29.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com