Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1291-1296    DOI: 10.11720/wtyht.2019.0225
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
宽能域γ能谱测井系统结构参数优化设计研究
李卓岱1,2, 张怀强1,2(), 卢炜煌2, 刘进洋2, 颜苗苗2
1. 东华理工大学 放射性地质与勘探技术国防重点学科实验室,江西 南昌 330013
2. 东华理工大学 核科学与工程学院,江西 南昌 330013
A study of structural optimization design of the wide-energy range gamma spectra logging system
Zhuo-Dai LI1,2, Huai-Qiang ZHANG1,2(), Wei-Huang LU2, Jin-Yang LIU2, Miao-Miao YAN2
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China
2. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
全文: PDF(2174 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

伽马能谱测井广泛应用于放射性矿床、金属、非金属矿床、地层对比等方向,是我国目前铀矿资源勘查的主要方法。为获得更宽的伽马能谱测量范围,采用LaBr3和BGO双探测器组合来完成宽能域伽马能谱测井系统的设计,基于MCNP模拟研究宽能域伽马能谱测井系统的结构优化设计原则。探测器采用管式结构,屏蔽体采用钨铁镍合金效果最好,屏蔽体厚度达到14 cm时即可对远侧探头产生较好的屏蔽效果;近侧探头在相对位置在35 cm及以上时对快中子的屏蔽效果与远侧探头的效果相接近;改变中子源位置对热中子的屏蔽效果提升有限;硼单质作为热中子屏蔽体在厚度达到0.2 cm时即可达到较好的屏蔽效果。分析模拟所得数据可知:快中子的屏蔽效果主要由屏蔽体材料、厚度和近端探头与屏蔽体的距离决定,中子源与屏蔽体距离增加所起作用有限。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李卓岱
张怀强
卢炜煌
刘进洋
颜苗苗
关键词 伽马能谱测井多探头测井蒙特卡罗方法数值模拟    
Abstract

The gamma spectrometry logging is widely used in survey of radioactive, metallic and non-metallic deposits and stratigraphic correlation. In order to obtain a wider energy range of gamma spectra, the authors designed the wide-energy spectra logging system with the combination of LaBr3 and BGO detectors. To determine the optimal selection principle of the wide-energy range gamma spectra logging system, the authors built a model of wide-energy spectra logging system on MCNP to simulate the measured gamma spectrum. The simulation shows that the best effect is achieved when the shield is made of tungsten-iron-nickel alloy. When the shield thickness reaches 14 cm, simulation shows better shielding effect for the distal detector. The effect for the proximal detector is close to the distal one when its relative position is 35 cm or more. The effect of changing the position of the neutron source on the thermal neutron shielding is limited. As a thermal neutron shield, boron could achieve obvious shielding effect with 0.2cm layer. The effect of fast neutron can be reduced by increasing shield thickness and the distance between the proximal detector and the shield.

Key wordsGamma Ray Spectrometry Log    multiprobe logging    Monte Carlo Method    numerical simulation
收稿日期: 2019-04-23      出版日期: 2019-11-28
:  P631.83  
基金资助:国家自然科学基金项目(11665001);国家自然科学基金项目(41864007);国家留学基金委项目(201708360170);江西省“百人远航工程”项目;放射性地质与勘探技术国防重点学科实验室开发基金项目(RGET1309)
通讯作者: 张怀强
作者简介: 李卓岱 (1996-),男,硕士研究生,主要研究方向为核探测技术与核仪器。Email:leezhuodai@foxmail.com
引用本文:   
李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
Zhuo-Dai LI, Huai-Qiang ZHANG, Wei-Huang LU, Jin-Yang LIU, Miao-Miao YAN. A study of structural optimization design of the wide-energy range gamma spectra logging system. Geophysical and Geochemical Exploration, 2019, 43(6): 1291-1296.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0225      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1291
Fig.1  测井系统几何形状示意
Fig.2  探头几何结构示意
Fig.3  不同屏蔽材料下的能谱
Fig.4  不同屏蔽体厚度时BGO探测器与LaBr3探测器的相对屏蔽效率
Fig.5  不同屏蔽体厚度在不同探测器位置的相对屏蔽效率
Fig.6  不同屏蔽体厚度在不同中子源位置的相对屏蔽效率
Fig.7  不同硼层厚度下的能谱比较
[1] 付锦, 赵宁博, 裴承凯 , 等. 中国铀、钍、钾元素地球化学场特征及与铀矿化关系[J]. 物探与化探, 2014,38(2):200-204.
doi: 10.11720/j.issn.1000-8918.2014.2.03
[1] Fu J, Zhao N B, Pei C K , et al. Geochemical characteristics of uranium, thorium and potassium anomalies in china in relation to uranium mineralization[J]. Geophysical and Geochemical Exploration, 2014,38(2):200-204.
[2] 胡守玉 . 诸广山岩体铀成矿航空伽马能谱特征及找矿预测[J]. 西部资源, 2018,87(6):164-166.
[2] Hu S Y . Characteristics of airborne gamma-ray spectrum of uranium mineralization at Zhuguang mountain in prospecting and prediction[J]. Western Resources, 2018,87(6):164-166.
[3] 李继安 . 钍归一化在盆地γ能谱资料处理中的应用[J]. 世界核地质科学, 2007,24(3):178-181.
[3] Li J A . Application on Th normalization for basin gamma spectrometry data processing[J]. World Nuclear Geoscience, 2007,24(3):178-181.
[4] 吴永鹏, 汤彬, 程建平 , 等. 利用LaBr3(Ce)伽马谱仪直接测定铀矿体中铀含量的方法[J]. 物探与化探, 2012,36(3):414-417.
[4] Wu Y P, Tang B, Cheng J P , et al. The application of LaBr3(Ce) gamma radiation scintillation spectrometer to direct determination of uranium content of uranium ore bodies[J]. Geophysical and Geochemical Exploration, 2012,36(3):414-417.
[5] 王卫华 . 地层自然伽马射线能量峰的识别[D]. 青岛:中国石油大学( 华东), 2007.
[5] Wang W H . The identification of energy peaks in gamma-ray spectrum of formations[D]. Qingdao:China University of Petroleum( East China), 2007.
[6] 王卫华 . 利用标准峰函数方法识别地层自然伽马射线能量峰[J]. 石油管材与仪器, 2007,21(1):77-79.
[6] Wang W H . Identifying the energy peaks in formation gamma-ray spectrum with the reference peakfunction[J]. Petroleum Instruments, 2007,21(1):77-79.
[7] 李传伟, 廖琪梅, 李安宗 , 等. 自然伽马能谱解谱方法研究[J]. 核电子学与探测技术, 2008,28(4):796-800.
[7] Li C W, Yan Q M, Li A Z , et al. Study on the methods of spectrum skipping for spectrum gamma logging[J]. Nuclear Electronics & Detection Technology, 2008,28(4):796-800.
[8] Favalli A, Mehner H C, Simonelli F . Wide energy range efficiency calibration for a lanthanum bromide scintillation detector[J]. Radiation Measurements, 2008,43(2):506-509.
[9] 文万信, 靳根明 . BGO高能γ探测器性能测定与效率模拟[J]. 高能物理与核物理, 2002,26(11):1178-1183.
[9] Wan W X, Qi G M . Numerical Simulations on Efficiency and Measurement of Capabilities of BGO Detectors for High Energy γ Ray[J]. High Energy Physics and Nuclear Physics, 2002,26(11):1178-1183.
[10] 吴文圣 . 中子γ测井仪的中子屏蔽研究[J]. 核电子学与探测技术, 2004,24(1):24-26.
[10] Wu W S . Neutron shielding study of neutron-photon logging tool[J]. Nuclear Electronics & Detection Technology, 2004,24(1):24-26.
[11] 严慧娟, 岳爱忠, 赵均 , 等. 地层元素测井仪器结构参数的蒙特卡罗数值模拟[J]. 测井技术, 2012,36(3):282-285.
[11] Yan H J, Yue A Z, Zhao J , et al. Monte Carlo numerical simulation of structure parameters in formation elements logging tool[J]. Well Logging Technology, 2012,36(3):282-285.
[12] 朱力, 葛良全, 张庆贤 , 等. MC法模拟地层元素测井仪优化中子屏蔽体[J]. 核电子学与探测技术, 2016,36(9).
[12] Zhu L, Ge L Q, Zhang Q X , et al. The Monte Carlo simulation optimizes of formation elements logging instrument neutron shielding[J]. Nuclear Electronics & Detection Technology, 2016,36(9).
[13] 张罡 . 地层元素测井伽马能谱数值模拟[D]. 成都:成都理工大学, 2018.
[13] Zhang G . Formation element logging mamma spectra numerical simulation[D]. Chengdu:Chengdu University of Technology, 2018.
[14] 谢希成, 赖万昌, 赵祖龙 , 等. LaBr3 (Ce)与NaI(Tl)闪烁探测器的性能研究与比较[J]. 核电子学与探测技术, 2014(7):917-920.
[14] Xie X C, Lai W C, Zhao Z L , et al. Test and comparison of lanthanum bromide and sodium Iodide detector[J]. Nuclear Electronics & Detection Technology, 2014(7):917-920.
[15] 董兰屏, 庞巨丰 . 自然伽马能谱测井原理及其应用[J]. 计量与测试技术, 2009,36(9):50-51.
[15] Dong L P, Pang J F . The Principle and Application of Natural Gamma Ray Spectrometry Logging[J]. Metrology & Measurement Technique, 2009,36(9):50-51.
[16] 任爱阁 . 自然伽马能谱测井谱解析方法研究[D]. 山东:中国石油大学( 华东), 2007.
[16] Ren A G . The study of spectral analysis of natural gamma ray spectralog[D]. Shandong: China University of Petroleum, 2007.
[17] 孟繁良 . 中子俘获伽玛能谱处理方法及其在元素俘获测井中的初步应用[D]. 兰州:兰州大学, 2015.
[17] Meng F L . Neutron capture gamma ray spectrum processing method and preliminary application in elemental capture logging[D]. Lanzhou:Lanzhou University, 2015.
[18] 郑华, 孙亮, 梁庆宝 , 等. PNST-E脉冲中子地层元素测井技术研究[J]. 测井技术, 2015,39(4):395-404,421.
[18] Zheng H, Sun L, Liang Q B , et al. On formation element logging with the PNST-E pulsed neutron spectroscopy tool[J]. Well Logging Technology, 2015,39(4):395-404,421.
[19] 喻益明 . 地层元素测井解释方法研究[J]. 同位素, 2017,30(3):187-193.
[19] Yu Y M . The study of formation elements logging interpretation method[J]. Journal of Isotopes, 2017,30(3):187-193.
[20] 程华国, 袁祖贵 . 用地层元素测井(ECS)资料评价复杂地层岩性变化[J]. 核电子学与探测技术, 2005,25(3):233-238.
[20] Cheng H G, Yuan Z G . Evaluation of formation lithology changes using elemental capture spectroscopy (ECS) logging[J]. Nuclear Electronics & Detection Technology, 2005,25(3):233-238.
[21] 吴文圣, 张立娟 . 核辐射测井全能谱分析方法综述[J]. 地球物理学进展, 2011,26(4):1423-1430.
doi: 10.3969/j.issn.1004-2903.2011.04.038
[21] Wu W S, Zhang L J . The summarization for full spectrum analysis methods of radioactive logging[J]. Progress in Geophysics, 2011,26(4):1423-1430.
[22] Galford J E, Quirein J A, Shannon S, et al. Field test results of a new neutron induced gamma ray spectroscopy geochemical logging tool[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2009.
[23] 李娟, 陈通, 陈绪龙 . 宽能域中子伽马能谱测井技术及其应用[J]. 油气藏评价与开发, 2014(4):34-38.
[23] Li J, Chen T, Chen X L . Wide field neutron-gamma spectrum logging and its application[J]. Reservoir Evaluation and Development, 2014(4):34-38.
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[3] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[4] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[5] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[6] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[7] 刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
[8] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
[9] 张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6): 1221-1227.
[10] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5): 970-976.
[11] 冯牧群, 刘得军, 潘琦, 冯硕, 刘佳宁. 基于磁异常的平行管线数值模拟[J]. 物探与化探, 2018, 42(2): 405-411.
[12] 姜国庆, 黄敬军, 张大莲, 徐士银, 卢进添. 徐州地区全新世古河道地电特征研究[J]. 物探与化探, 2018, 42(2): 422-428.
[13] 许新刚, 徐正玉. 地—井瞬变电磁响应三维时域有限差分模拟[J]. 物探与化探, 2017, 41(3): 496-504.
[14] 岳晓鹏, 白超英, 岳崇旺. 二维弹性波频率域17点差分格式及正演模拟[J]. 物探与化探, 2017, 41(2): 299-305.
[15] 王兴春, 郑学萍, 邓晓红, 张杰, 武军杰, 杨毅, 智庆全, 杨启安. 定源回线水平分量特性及其应用效果[J]. 物探与化探, 2016, 40(6): 1166-1172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com