Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 589-597    DOI: 10.11720/wtyht.2019.0043
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
磁异常和梯度的频率域三维成像方法
崔亚彤, 郭良辉
中国地质大学(北京) 地球物理与信息技术学院,北京 100083
3-D imaging of magnetic anomalies and gradients in the frequency domain
Ya-Tong CUI, Liang-Hui GUO
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(3600 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三维反演在磁数据定量解释中具有重要作用。常用的空间域三维反演方法通常需要大量的正演和反演计算,因此对大规模数据的反演效率较低。三维成像是另一种定性和定量解释磁数据的重要方法。文中给出了一种磁异常与梯度三维成像的频率域迭代方法,该方法可以提高成像效率,适用于大规模数据的快速成像。笔者推导了磁总场异常和异常梯度频率域正演公式和成像公式,并将一种深度尺度因子引入成像公式中,提高了深度精度;笔者采用了迭代优化算法,减小了拟合误差,进一步提高了成像精度。通过理论模型数据试验和中国新疆某金属矿床实测数据,验证了本文方法的有效性、可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔亚彤
郭良辉
关键词 磁异常梯度三维成像正演频率域深度尺度因子    
Abstract

3-D inversion plays an important role in the quantitative interpretation of magnetic data. However, the commonly used space-domain 3-D inversion algorithms usually require a large number of forward modeling and inversion calculations. Hence, the inversion based on a large-scale data is usually inefficient. 3-D imaging is another significant algorithm for the qualitative and quantitative interpretation of magnetic data. This paper implements a frequency-domain iterative approach for 3-D imaging of magnetic anomalies and gradients, which can improve imaging efficiency and is suitable for rapid imaging of large-scale data. The frequency-domain forward formulae and imaging formulae of magnetic total field anomaly and magnetic gradients are derived in this paper. A depth scaling factor is added to the imaging formulae to significantly improve the depth resolution. In order to reduce the fitting error and improve the imaging accuracy, this paper adopts an iterative optimization algorithm. The effectiveness and feasibility of the presented approach were verified by the synthetic data and real data from a metallic deposit area in Xinjiang.

Key wordsmagnetic anomalies    gradients    3-D imaging    forward modeling    frequency domain    depth scaling factor
收稿日期: 2019-01-08      出版日期: 2019-05-31
:  P631  
基金资助:国家自然科学基金面上项目(41774098);中央高校基本科研业务费专项资金(2652018266)
作者简介: 崔亚彤(1993-),女,博士在读,主要研究方向为重磁数据处理和反演算法。Email: 3010170005@cugb.edu.cn
引用本文:   
崔亚彤, 郭良辉. 磁异常和梯度的频率域三维成像方法[J]. 物探与化探, 2019, 43(3): 589-597.
Ya-Tong CUI, Liang-Hui GUO. 3-D imaging of magnetic anomalies and gradients in the frequency domain. Geophysical and Geochemical Exploration, 2019, 43(3): 589-597.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0043      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/589
Fig.1  频率域迭代算法流程
编号 东向长度/m 北向长度/m 厚度/m 东向中心位置/m 北向中心位置/m 纵向中心位置/m 磁化强度/(A·m-1)
A 300 300 200 -400 0 -300 1
B 700 700 700 600 0 -1100 1.5
Table 1  直立长方体的几何和物性参数
Fig.2  理论模型及其含噪数据
a—理论模型三维示意;b—含噪磁总场异常;c—含噪垂直梯度异常
Fig.3  基于本文频率域方法的含噪磁总场异常三维成像结果
a—迭代1次成像结果;b—迭代10次成像结果
Fig.4  成像结果误差评价
a—理论磁总场异常与实际磁总场异常的偏差;b—收敛曲线
Fig.5  基于本文频率域方法的含噪磁异常垂直梯度成像结果及误差
a—迭代10次三维成像结果;b—理论垂直梯度异常与实际异常的偏差
Fig.6  本文频率域方法与空间域反演方法(UBC)的运行时间对比
Fig.7  新疆某金属矿区实测数据
a—磁总场异常;b—异常垂直梯度;黑色虚线A-B为图8所示成像结果剖面位置,zk1和zk3为两口深度不同的钻井
Fig.8  基于本文频率域方法的三维成像结果
a—实际磁总场异常三维成像结果;b—磁垂直梯度三维成像结果;红色实线为两个钻孔位置,白线为沿zk1钻孔的金属矿轮廓线
[1] Li Y, Oldenburg D W . 3-D inversion of magnetic data[J]. Geophysics, 1996,61(2):394-408.
doi: 10.1190/1.1443968
[2] Pilkington M . 3D magnetic data-space inversion with sparseness constraints[J]. Geophysics, 2009,74(1):L7-L15.
doi: 10.1190/1.3026538
[3] 杨文采 . 地球物理反演的理论与方法[M]. 北京: 地质出版社, 1997.
[3] Yang W C. Theory and Method of Geophysical Inversion[M]. Beijing: Geological Publishing House, 1997.
[4] 管志宁, 侯俊胜, 黄临平 , 等. 重磁异常反演的拟BP神经网络方法及其应用[J]. 地球物理学报, 1998,41(2):242-251.
doi:
[4] Guan Z N, Hou J S, Huang L P , et al. Inversion of gravity and magnetic anomalies using pseudo-BP neural network method and its application[J]. Chinese Journal of Geophysics, 1998,41(2):242-251.
[5] 王万银, 冯旭亮, 高玲举 , 等. 重磁方法在吐尔库班套铜镍矿区勘查中的应用[J]. 物探与化探, 2014,38(3):423-429.
[5] Wang W Y, Feng X L, Gao L J , et al. The application of gravity and magnetic techniques to the prospecting for the Tuerkubantao copper-nickel ore district[J]. Geophysical and Geochemical Exploration, 2014,38(3):423-429.
[6] Blakely R J. Potential Theory in Gravity and Magnetic Applications[M]. Cambridge: Cambridge University Press, 1995.
[7] 李焓, 邱之云, 王万银 . 复杂形体重、磁异常正演问题综述[J]. 物探与化探, 2008,32(1):36-43.
[7] Li H, Qiu Z Y, Wang W Y . A review of the forward calculation of gravity and magnetic anomalies caused by irregular models[J]. Geophysical and Geochemical Exploration, 2008,32(1):36-43.
[8] Tikhonov A N, Arsenin V Y . Solutions of Ⅲ-posed problems[M]. Washington D.C: V. H. Winston & Sons, 1977.
[9] Li Y, Oldenburg D W . Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method[J]. Geophysics Journal International, 2003,152(2):251-265.
doi: 10.1046/j.1365-246X.2003.01766.x
[10] Commer M . Three-dimensional gravity modelling and focusing inversion using rectangular meshes[J]. Geophysical Prospecting, 2011,59(5):966-979.
[11] 姚长利, 郝天珧, 管志宁 . 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002,26(4):253-257.
[11] Yao C L, Hao T Y, Guan Z N . Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J]. Geophysical and Geochemical Exploration, 2002,26(4):253-257.
[12] Portniaguine O, Zhdanov M S . Focusing geophysical inversion images[J]. Geophysics, 1999,64(3):874-887.
doi: 10.1190/1.1444596
[13] Portniaguine O, Zhdanov M S . 3-D magnetic inversion with data compression and image focusing[J]. Geophysics, 2002,67(5):1532-1541.
doi: 10.1190/1.1512749
[14] 罗凡, 严加永, 付光明 . 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018,42(1):50-60.
[14] Luo F, Yan J Y, Fu G M . The application of gravity and magnetic three-dimensional inversion based on known information constraint in deep magnetite exploration: A case study of the Nihe iron deposit in Anhui Province[J]. Geophysical and Geochemical Exploration, 2018,42(1):50-60.
[15] Lv Q, Qi G, Yan J . 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history[J]. Geophysics, 2012,78(1):B25-B35.
[16] Zhang Y, Yan J, Li F , et al. A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers[J]. Geophysical Journal International, 2015,201(1):267-275.
doi: 10.1093/gji/ggv016
[17] Li Y, Oldenburg D W . Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics, 2000,65(2):540-552.
doi: 10.1190/1.1444749
[18] 姚长利, 郝天珧, 管志宁 , 等. 重磁遗传算法三维反演中高速计算及有效存储方法技术[J]. 地球物理学报, 2003,46(2):252-258.
[18] Yao C L, Hao T Y, Guan Z N , et al. High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms[J]. Chinese Journal of Geophysics, 2003,46(2):252-258.
[19] 姚长利, 郑元满, 张聿文 . 重磁异常三维物性反演随机子域法方法技术[J]. 地球物理学报, 2007,50(5):1576-1583.
doi:
[19] Yao C L, Zheng Y M, Zhang Y W . 3-D gravity and magnetic inversion for physical properties using stochastic subspaces[J]. Chinese Journal of Geophysics, 2007,50(5):1576-1583.
[20] Vatankhah S, Renaut R A, Ardestani V E . A fast algorithm for regularized focused 3D inversion of gravity data using randomized singular-value decomposition[J]. Geophysics, 2018,83(4):G25-G34.
doi: 10.1190/geo2017-0386.1
[21] Parker R L . The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973,31(4):447-455.
doi: 10.1111/j.1365-246X.1973.tb06513.x
[22] Oldenburg D W . The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974,39(4):526-536.
doi: 10.1190/1.1440444
[23] Cribb J . Application of the generalized linear inverse to the inversion of static potential data[J]. Geophysics, 1976,41(6):1365-1369.
doi: 10.1190/1.1440686
[24] Kobrunov A I, Varfolomeev V A . On one method of ε-equivalent redistribution and its practical application in the interpretation of gravity fields[J]. Earth Physics USSR Academy of Science, 1981,10:25-44.
[25] Pedersen L B . Relations between potential fields and some equivalent sources[J]. Geophysics, 1991,56(7):961-971.
doi: 10.1190/1.1443129
[26] Priezzhev I I . Integrated interpretation technique of geophysical data for geological modeling[D]. Moscow:State university of Sergo ordjonikidze, 2010.
[27] Priezzhev I I, Scollard A, Lu Z, Schlumberger. Regional production prediction technology based on gravity and magnetic data from the Eagle Ford formation, Texas, USA [C]//SEG Technical Program Expanded Abstracts, 2014, 1354-1358.
[28] Kobrunov A I . The method of functional representations in the solution of inverse problems of gravimetry[J]. Izvestiya Physics of the Solid Earth, 2015,51(4):459-468.
doi: 10.1134/S1069351315030076
[29] 王万银, 刘金兰, 邱之云 , 等. 频率域偶层位曲面位场处理和转换方法研究[J]. 地球物理学报, 2009,52(10):2652-2665.
doi: 10.3969/j.issn.0001-5733.2009.10.026
[29] Wang W Y, Liu J L, Qiu Z Y , et al. The research of the frequency domain dipole layer method for the processing and transformation of potential field on curved surface[J]. Chinese Journal of Geophysics, 2009,52(10):2652-2665.
[30] 程振炎 . 重磁场的有限元法曲化平[J]. 物探与化探, 1981,5(3):153-158.
[30] Cheng Z Y . Curved leveling of gravity and magnetic field by finite element method[J]. Geophysical and Geochemical Exploration, 1981,5(3):153-158.
[31] 刘天佑, 刘大为, 詹应林 , 等. 磁测资料处理新方法及在危机矿山挖潜中的应用[J]. 物探与化探, 2006,30(5):377-381,396.
[31] Liu T Y, Liu D W, Shan Y L , et al. A new method of magnetic survey data processing and its application in tapping potential of crisis mines[J]. Geophysical and Geochemical Exploration, 2006,30(5):377-381,396.
[32] Guo L, Yan J . 3-D wavelet-based fusion approach for comprehensively analyzing multiple physical-property voxel models inverted from magnetic data[J]. Journal of Applied Geophysics, 2017,139:47-53.
doi: 10.1016/j.jappgeo.2017.02.006
[1] 孙思源, 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.
[2] 王博, 郭良辉, 崔亚彤, 王祥. 三维Tesseroid网格模型重力异常正演方法及并行算法[J]. 物探与化探, 2021, 45(6): 1597-1605.
[3] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[4] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[5] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[6] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[7] 吴洋, 严家斌. 基于压电效应的大地极化声子模拟研究[J]. 物探与化探, 2021, 45(3): 742-749.
[8] 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465.
[9] 孟庆奎, 周坚鑫, 舒晴, 高维, 徐光晶, 王晨阳. 理论模型分析卡尔曼滤波在航空全张量磁力梯度测量中的应用效果[J]. 物探与化探, 2021, 45(2): 473-479.
[10] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2): 480-489.
[11] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[12] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[13] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[14] 赵文举, 赵荔, 杨战军, 陶德强. 插值切割位场分离方法改进及其在资料处理中的应用[J]. 物探与化探, 2020, 44(4): 886-893.
[15] 张磊, 王万银, 赵修军, 张义蜜. 基于重磁场特征的新蔡铁矿区构造单元分布特征[J]. 物探与化探, 2020, 44(4): 975-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com