Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (4): 749-757    DOI: 10.11720/wtyht.2019.0041
     地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
运积物覆盖区地球化学找矿方法——土壤热磁组分测量
唐世新1,2, 李建军3, 马生明1,2, 胡树起1,2
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 自然资源部 地球化学探测重点实验室,河北 廊坊 065000
3. 河北省地质测绘院,河北 廊坊 065000
Thermomagnetic component measurement: A geochemical prospecting method for transported overburden region
Shi-Xin TANG1,2, Jian-Jun LI3, Sheng-Ming MA1,2, Shu-Qi HU1,2
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
2. Key Laboratory for Geochemical Exploration Technology, MNR, Langfang 065000, China
3. Geological Surveying and Mapping Institute of Hebei Province, Langfang 065000, China
全文: PDF(4942 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对运积物覆盖区找矿面临的技术难题,引入土壤热磁组分测量方法,以冀北蔡家营热液型铅锌银矿、东天山沙泉子岩浆型铜镍硫化物矿以及野马泉地区矽卡岩型铁铜多金属矿为例,选择运积物覆盖地段开展剖面及面积性方法试验研究。蔡家营与沙泉子研究区实验结果表明,与常规土壤测量方法获得的弱小异常相比,热磁组分测量地表异常显著,能够很好地反映出深部矿体空间位置及展布形态,具有强化弱异常、发现新异常的优势;野马泉地区试验结果表明,在运积物覆盖达百米以上的已知矿区或勘查区,热磁组分测量均有异常显示,异常元素空间套合较好,并为已知区外围覆盖区找矿勘查提供了新的找矿靶区。经实验证实,土壤热磁组分测量技术为解决运积物覆盖区找矿难题提供了一种行之有效的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐世新
李建军
马生明
胡树起
关键词 干旱半干旱区运积物盖层地球化学勘查找矿方法热磁组分测量    
Abstract

Aimed at the technical problem of ore-prospecting in transported overburden region, the authors carried out experimental studies of the method of thermalmagnetic component measurement in the known mining areas, which included the Caijiaying hydrothermal type lead-zinc-silver deposit in Hebei Province, the Shaquanzi magmatic copper-nickel sulfide deposit in east Tianshan, and the skarn type iron-copper polymetallic deposit in Yemaquan area. The experimental results of Caijiaying and Shaquanzi area show that, compared with the small and weak anomalies obtained by conventional soil measurement, the surface anomalies measured by thermal-magnetic components are significant, which can well reflect the spatial location and distribution pattern of deep orebodies and have the advantages of strengthening weak anomalies and discovering new ones. The results of the experiment in Yemaquan area show that there are anomalies delineated by thermomagnetic component measurement at the known mining areas with transported sediments covering more than 100 meters. And well matched abnormal elements in space provide a new target area for prospecting in the unknown area. It has been proved by experiments that the thermomagnetic component measurement technology provides an effective method for solving the problem of ore-prospecting in the transported covered region.

Key wordsarid and semi-arid region    transported overburden    geochemical exploration    prospecting method    thermalmagnetic component measurement
收稿日期: 2019-01-18      出版日期: 2019-08-15
:  P632  
基金资助:中国地质科学院基本科研业务费专项经费(YYWF201731);中国地质调查局地质调查项目(DD20160040)
作者简介: 唐世新(1985-),女,工程师,主要从事地球化学勘查方法研究工作。Email: tangshixin@igge.cn
引用本文:   
唐世新, 李建军, 马生明, 胡树起. 运积物覆盖区地球化学找矿方法——土壤热磁组分测量[J]. 物探与化探, 2019, 43(4): 749-757.
Shi-Xin TANG, Jian-Jun LI, Sheng-Ming MA, Shu-Qi HU. Thermomagnetic component measurement: A geochemical prospecting method for transported overburden region. Geophysical and Geochemical Exploration, 2019, 43(4): 749-757.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0041      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I4/749
Fig.1  样品焙烧温度(a)与时间试验(b)
Fig.2  热磁组分电磁分选流程示意
Fig.3  蔡家营试验区风成砂覆盖地段常规土壤与热磁组分测量结果对比
Fig.4  沙泉子试验区成矿元素箱式图
Fig.5  沙泉子试验区常规土壤与热磁组分主成矿元素异常分布
Fig.6  野马泉地区土壤热磁组分测量地球化学异常分布
[1] 张华, 孔牧, 杨少平 . 中国主要景观区区域地球化学勘查理论与方法[M]. 北京: 地质出版社, 2017.
[1] Zhang H, Kong M, Yang S P. Theories and methods of regional geochemical exploration in major landscape areas in China [M]. Beijing: Geological Publishing House, 2017.
[2] Wang X Q, Zhang B M, Lin X , et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016,73:417-431.
[3] Zhang B, Wang X, Ye R , et al. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.
[4] Zhang B, Wang X, Chi Q , et al. Three-dimensional geochemical patterns of regolith over a concealed gold deposit revealed by overburden drilling in desert terrains of northwestern China[J]. Journal of Geochemical Exploration, 2016,164:122-135.
[5] 胡树起, 马生明, 刘崇民 , 等. 热磁技术方法条件实验及相关问题[J]. 物探与化探, 2011,35(2):212-217.
[5] Hu S Q, Ma S M, Liu C M , et al. Experiments on technical conditions of the Thermomagnetic technology and some related problems[J]. Geophysical and Geochemical Exploration, 2011,35(2):212-217.
[6] 胡树起, 史长义, 马生明 , 等. 热磁技术在覆盖区找矿中的应用[J]. 物探与化探, 2010,34(5):622-626.
[6] Hu S Q, Shi C Y, Ma S M , et al. The application of thermomagnetic technique to ore prospecting in coverage area[J]. Geophysical and Geochemical Exploration, 2010,34(5):622-626.
[7] 唐世新, 马生明, 胡树起 . 土壤磁性组分测量在干旱荒漠区找矿中的有效性探讨[J]. 矿产勘查, 2012(6):804-810.
[7] Tang S X, Ma S M, Hu S Q . Application of soil magnetic component measurement technique in mineral prospecting in arid desert areas[J]. Mineral Exploration, 2012(6):804-810.
[8] 唐世新, 马生明, 李建军 , 等. 新疆东天山地区磁性组分测量有效性研究[J]. 物探化探计算技术, 2014,36(6):742-749.
[8] Tang S X, Ma S M, Li J J , et al. The availability discussion of magnetic material survey in dongtianshan, xinjiang[J]. Geophysical and Geochemical Exploration Computing Techniques, 2014,36(6):742-749.
[9] 唐世新, 李建军, 马生明 . 内蒙古东部运积物覆盖区地球化学勘查方法对比[J]. 物探与化探, 2018,42(3):499-505.
[9] Tang S X, Li J J, Ma S M . Optimum selection of geochemical exploration methods in areas covered by transported overburden, eastern Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2018,42(3):499-505.
[10] Cohen D R, Shen X C, Dunlop A C , et al. A comparison of selective extraction soil geochemistry and biogeochemistry in the Cobar area, New South Wales[J]. Journal of Geochemical Exploration, 1998,61(1):173-189.
[11] Alipour S, Cohen D R, Dunlop A C . Characteristics of magnetic and non-magnetic lag in the Cobar area, NSW[J]. Journal of Geochemical Exploration, 1997,58(1):15-28.
[12] Xie J, Dunlop A C . Dissolution rates of metals in Fe oxides: implications for sampling ferruginous materials with significant relict Fe oxides[J]. Journal of Geochemical Exploration, 1998,61(1):213-232.
[13] 张永兴, 顾尚义 . 河北省蔡家营铅锌银矿区地质构造研究[J]. 贵州工业大学学报:自然科学版, 2003(4):1-5.
[13] Zhang Y X, Gu S Y . Geological structure study on caijiaying Pb-Zn-Ag deposit district of hebei province[J]. Journal of Guizhou University of Technology:Natural Science Edition, 2003(4):1-5.
[14] 叶信栋, 孙彬彬, 周国华 , 等. 河北蔡家营铅锌多金属矿地电化学提取有效性及提取条件试验[J]. 地质与勘探, 2018(5):979-987.
[14] Ye X D, Sun B B, Zhou G H , et al. Effectiveness and conditions tests of geo-electrochemical extraction in the caijiaying Pb-Zn polymetallic mining area,hebei province[J]. Geology and Exploration, 2018(5):979-987.
[15] 冯有利, 郑辙, 艾永富 , 等. 蔡家营铅锌银多金属矿床的绿泥石结构特征[J]. 矿物学报, 2001(3):554-556.
[15] Feng Y L, Zheng C, Ai Y F , et al. Strucural characteristics of chlorite in the caijiaying Pb-Zn-Ag deposit[J]. Acta Mineralogica Sinica, 2001(3):554-556.
[16] 邵跃 . 矿床元素原生分带的研究及其在地球化学找矿中的应用[J]. 地质与勘探, 1984(2):47-55.
[16] Shao Y . The study of the metallogenic zoning of ore deposits and its application in geochemical prospecting[J]. Geology and Exploration, 1984(2):47-55.
[17] 李文明, 任秉琛, 杨兴科 , 等. 东天山中酸性侵入岩浆作用及其地球动力学意义[J]. 西北地质, 2002(4):41-64.
[17] Li W M, Ren B C, Yang X K , et al. The intermediate-acid intrusive magmatism and its geodynamic significance in Eastern Tianshan region[J]. Northwestern Geology, 2002(4):41-64.
[18] 黄小文, 漆亮, 孟郁苗 . 东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征[J]. 矿床地质, 2013(6):1188-1210.
[18] Huang X W, Qi L, Meng Y M . Trace element and REE geochemistry of minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-)Fe deposits, eastern Tianshan Mountains[J]. Mineral Deposits, 2013(6):1188-1210.
[19] 方维萱, 黄转盈, 唐红峰 , 等. 东天山库姆塔格—沙泉子晚石炭世火山-沉积岩相学地质地球化学特征与构造环境[J]. 中国地质, 2006(3):529-544.
[19] Fang W X, Huang Z Y, Tang H F , et al. Lithofacies, geological and geochemical characteristics and tectonic setting of Late Carboniferous volcanic-sedimentary rocks in the Kumtag-Shaquanzi ar ea, East Tianshan[J]. Geology in China, 2006(3):529-544.
[20] 徐璐璐, 柴凤梅, 李强 , 等. 东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 中国地质, 2014(6):1771-1790.
[20] Xu L L, Chai F M, Li Q , et al. Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in East Tianshan Mountains and their geological significance[J]. Geology in China, 2014(6):1771-1790.
[21] 黄小文, 漆亮, 王怡昌 , 等. 东天山沙泉子铜铁矿床磁铁矿Re-Os定年初探[J]. 中国科学:地球科学, 2014(4):605-616.
[21] Huang X W, Qi L, Wang Y C , et al. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern TianshanNW China[J]. Science China: Earth Sciences, 2014(4):605-616.
[22] 宋忠宝, 贾群子, 张占玉 , 等. 东昆仑祁漫塔格地区野马泉铁铜矿床地质特征及成因探讨[J]. 西北地质, 2010(4):209-217.
[22] Song Z B, Jia Q Z, Zhang Z Y , et al. Study on geological feature and origin of yemaquan Fe-Cu deposit in qimantage area, eastern kunlun[J]. Northwestern Geology, 2010(4):209-217.
[23] 高永宝, 李文渊, 钱兵 , 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014(6):1647-1665.
[23] Gao Y B, Li W Y, Qian B , et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014(6):1647-1665.
[24] 姚磊, 吕志成, 于晓飞 , 等. 青海祁漫塔格地区矽卡岩型矿床花岗质岩石矿物学及地质意义[J]. 岩石学报, 2015(8):2294-2306.
[24] Yao L, Lv Z C, Yu X F , et al. Mineral characteristics of granitic rocks from skarn deposits, Qimantag area, Qinghai Province, East Kunlun, and its geological significance[J]. Acta Petrologica Sinica, 2015(8):2294-2306.
[25] 许长坤, 刘世宝, 赵子基 , 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012(10):1621-1678.
[25] Xu C K, Liu S B, Zhao Z J , et al. Metallogenic lawand and prospect direction of iron deposits in the east kunlun metallogenic belt in qinghai[J]. Acta Geological Sinica, 2012(10):1621-1678.
[26] 刘建楠, 丰成友, 赵一鸣 , 等. 青海野马泉矽卡岩铁锌多金属矿区侵入岩、交代岩及矿化蚀变特征[J]. 矿床地质, 2013(1):77-93.
[26] Liu J N, Feng C Y, Zhao Y M , et al. Characteristics of intrusive rock, metasomatites, mineralization and atteration in Yemaquan skarn Fe-Zn polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 2013(1):77-93.
[1] 黄景孟, 熊意林, 张笑, 鲁显松, 周豹, 汪国虎. 南秦岭竹山县土地岭火山岩型钽铌矿综合找矿方法及找矿模型[J]. 物探与化探, 2020, 44(5): 1135-1143.
[2] 蔺强强, 郑琪, 苏永红. 黄土覆盖区地气测量有效性评价——以甘肃省通渭县陈贾村地区为例[J]. 物探与化探, 2020, 44(3): 533-539.
[3] 程兴国, 陈新, 闫红圃, 宋纳纳, 宁勇. 河南省方城县双山碱性正长岩型铌矿综合找矿方法及找矿模型[J]. 物探与化探, 2018, 42(2): 247-252.
[4] 杨志斌, 周亚龙, 孙忠军, 张富贵, 张舜尧, 李广之. 羌塘盆地泥火山发育区天然气水合物地球化学勘查[J]. 物探与化探, 2017, 41(3): 452-458.
[5] 杨鑫, 冉军林. 蒋家山沟金矿综合物、化探的找矿效果[J]. 物探与化探, 2016, 40(1): 40-45.
[6] 袁桂琴, 杨少平, 米宏泽, 孙跃. 物探化探技术标准体系研究有关问题的探讨[J]. 物探与化探, 2015, 39(6): 1267-1270.
[7] 姚铁, 周勇, 杜展军, 赵振明. 地、物、化综合方法在博故图金矿勘查中的应用[J]. 物探与化探, 2015, 39(5): 877-884.
[8] 陈国光, 马振东, 奚小环, 李敏, 张华, 湛龙, 张德存, 叶家瑜. 矿产地球化学勘查体系的探讨[J]. 物探与化探, 2015, 39(3): 437-442.
[9] 胡树起, 刘崇民, 马生明. 铅硫同位素在地球化学勘查中的应用[J]. 物探与化探, 2015, 39(2): 366-370.
[10] 郭志娟, 孔牧, 张华, 杨帆, 徐仁廷, 王成文, 王乔林, 宋云涛, 韩伟. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15.
[11] 郎兴海, 唐菊兴, 李志军, 董树义, 丁枫, 谢富伟, 王子正, 张丽, 黄勇. 化探在西藏雄村矿区Ⅱ、Ⅲ号矿体发现中的作用[J]. 物探与化探, 2014, 38(4): 667-672.
[12] 赵丕忠, 程正发, 周二斌, 涂金飞, 盛夏. 大兴安岭成矿带北段化探方法组合与找矿突破[J]. 物探与化探, 2014, (3): 471-477.
[13] 周余国, 高启芝, 王玉朝, 周坤. 痕量金野外快速测试方法的系统改进[J]. 物探与化探, 2014, (3): 539-543.
[14] 黄诚, 张德会, 和成忠, 王新彦, 喻晓, 殷海燕. 热液金矿床围岩蚀变特征及其与金矿化的关系[J]. 物探与化探, 2014, 38(2): 278-283,288.
[15] 郝立波, 冯朔伟, 赵玉岩, 陆继龙, 赵禹. 大兴安岭北段三道湾子碲金型矿床的原生晕分带及意义[J]. 物探与化探, 2014, 38(2): 284-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com