Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 476-485    DOI: 10.11720/wtyht.2019.0019
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用
沙志彬1,2, 万晓明2, 赵忠泉2, 梁金强2, 杨瑞召3, 白钰4, 柴祎2
1. 中国地质大学(武汉) 资源学院,湖北 武汉 430074
2. 广州海洋地质调查局,广东 广州 510075
3. 中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
4. 北京宇博新创地球物理技术有限公司,北京 102200
The application of pre-stack simultaneous inversion to gas hydrates reservoir prediction in the western Pearl River Mouth basin
Zhi-Bin SHA1,2, Xiao-Ming WAN2, Zhong-Quan ZHAO2, Jin-Qiang LIANG2, Rui-Zhao YANG3, Yu BAI4, Yi CHAI2
1. Faculty of Resources,China University of Geosciences(Wuhan),Wuhan 430074,China
2. Guangzhou Marine Geological Survey,Guangzhou 510075,China
3. College of Geoscience and Surveying Engineering,China University of Mining & Technology(Beijing),Beijing 100083,China
4. Beijing Yubo Innovation Geophysics Technology Co.,Ltd.,Beijing 102200,China
全文: PDF(8770 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

珠江口盆地西部海域发育弱BSR或无BSR的天然气水合物储层,常规叠后反演所获得的参数单一,难以精确预测其天然气水合物分布特征。本文在地震道集优化处理、精细速度分析、岩石物理分析及低频模型精确建立的基础上,针对性地采用叠前同时反演技术,对珠江口盆地西部海域天然气水合物储层进行预测,并利用岩相流体概率分析技术对其进行综合识别,实现了对天然气水合物储层地精细刻画。反演预测结果表明,研究区天然气水合物较为发育,预测结果与钻探结果吻合程度较高,应用效果良好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙志彬
万晓明
赵忠泉
梁金强
杨瑞召
白钰
柴祎
关键词 天然气水合物叠前同时反演储层预测岩相流体概率分析技术珠江口盆地西部海域    
Abstract

Weak BSR or no BSR is developed in western Pearl River Mouth basin.The conventional post-stack inversion obtains only one parameter,and it is difficult to accurately predict the gas hydrates distribution characteristics.Based on seismic gather optimization,fine velocity analysis,petrophysical analysis and accurate establishment of low-frequency models,the authors used pre-stack simultaneous inversion technology to predict gas hydrate reservoirs in western Pearl River Mouth basin,adopted facies and fluid probabilities analysis technology to comprehensively identify the gas hydrate reservoirs in the study area,and achieved a fine characterization of the gas hydrates.The inversion prediction results show that the gas hydrates are developed well in the study area,and the prediction results are consistent with the drilling results,implying that the application effect of pre-stack simultaneous inversion technology is ideal.

Key wordsgas hydrates    pre-stack simultaneous inversion    reservoir prediction    facies and fluid probabilities analysis    western Pearl River Mouth basin
收稿日期: 2019-01-12      出版日期: 2019-05-31
:  P631.4  
基金资助:国家重点研发计划项目(2018YFC0310000);中国地质调查局地质调查项目(DD20160211)
作者简介: 沙志彬(1972-),男,广东梅州人,硕士,教授级高工,长期从事天然气水合物勘查与研究工作。Email: shazb2008@hydz.cn
引用本文:   
沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
Zhi-Bin SHA, Xiao-Ming WAN, Zhong-Quan ZHAO, Jin-Qiang LIANG, Rui-Zhao YANG, Yu BAI, Yi CHAI. The application of pre-stack simultaneous inversion to gas hydrates reservoir prediction in the western Pearl River Mouth basin. Geophysical and Geochemical Exploration, 2019, 43(3): 476-485.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0019      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/476
Fig.1  研究区地震剖面
Fig.2  叠前同时反演流程
Fig.3  道集优化前(a)后(b)对比
Fig.4  分道集叠加数据对比
a—全叠加数据频谱;b—近道叠加数据频谱;c—中道叠加数据频谱;d—远道叠加数据频谱
Fig.5  分道集叠加数据频谱
a—全叠加数据频谱;b—近道叠加数据频谱;c—中道叠加数据频谱;d—远道叠加数据频谱
Fig.6  精细层速度剖面
Fig.7  弹性参数交汇
Fig.8  叠前弹性参数低频模型
a—纵波阻抗低频模型;b—横波阻抗低频模型;c—密度低频模型
Fig.9  纵横波速度比与纵波阻抗叠前反演对比剖面
a—纵横波速度比叠前反演剖面;b—纵波阻抗叠前反演剖面
Fig.10  天然气水合物储层分布概率分析
Fig.11  天然气水合物分布概率对比剖面
a—纵波阻抗叠前反演剖面;b—纵横波速度比叠前反演剖面;c—天然气水合物分布概率
Fig.12  研究区天然气水合物储层分布平面图及钻探获取的样品
[1] Kvenvolden K A . Gas hydrates-Geological perspective and global change[J]. Rev. Geophys., 1993,31(2):173-187.
doi: 10.1029/93RG00268
[2] Collett T S . Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002,86(11):1971-1992.
[3] 陈多福, 李绪宣, 夏斌 . 南海琼东南盆地水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004,47(3):483-488.
doi: 10.3321/j.issn:0001-5733.2004.03.018
[3] Chen D F, Li X X, Xia B . Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004,47(3):483-488.
[4] 张光学, 祝有海, 徐华宁 . 非活动大陆边缘的水合物及其成藏过程述评[J]. 地质评论, 2003,49(2):181-186.
doi: 10.3321/j.issn:0371-5736.2003.02.010
[4] Zhang G X, Zhu Y H, Xu H N . A Review of gas hydrate on the passive continental margin and its pool-formation process[J]. Geological Review, 2003,49(2):181-186,doi: 10.3321/j.issn:0371-5736.2003.02.010.
[5] 蒲晓强, 陶小晚, 张会领 . 南海北部陆坡水合物存在的地球物理和地球化学特征[J]. 天然气地球科学, 2009,20(4):620-626.
[5] Pu X Q, Tao X W, Zhang H L . Geophysical and geochemical character of natural gas hydrate occurrence in northern continental slope of South China Sea[J]. Natural Gas Geoscience, 2009,20(4):620-626.
[6] 龚跃华, 张光学, 郭依群 , 等. 南海北部神狐海域水合物成矿远景[J]. 海洋地质与第四纪地质, 2013,32(2):97-104.
[6] Gong Y H, Zhang G X, Guo Y Q , et al. Prospect of gas hydrate resources in the area to southwest Shenhu of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2013,32(2):97-104.
[7] 苏丕波, 乔少华, 付少英 , 等. 南海北部琼东南盆地水合物成藏数值模拟[J]. 天然气地球科学, 2014,25(7):1111-1117.
doi: 10.11764/j.issn.1672-1926.2014.07.1111
[7] Sun P B, Qiao S H, Fu S Y , et al. Numerical simulation of gas hydrate accumulation in Qiongdongnan basin, northern South China Sea[J]. Natural Gas Geoscience, 2014,25(7):1111-1117.
[8] 徐华宁, 杨胜雄, 郑晓东 , 等. 南中国海神狐海域水合物地震识别及分布特征[J]. 地球物理学报, 2010,53(7):1691-1698.
doi: 10.3969/j.issn.0001-5733.2010.07.020
[8] Xun H N, Yang S X, Zheng X D , et al. Seismic identification of gas hydrate and its distribution in Shenhu Area, South China Sea[J]. Chinese Journal of Geophysics, 2010,53(7):1692-1698.
[9] 杨睿, 吴能友, 白杰 , 等. 南海北部无明显BSR地区水合物识别研究[J]. 地球物理学进展, 2013,28(2):1033-1040.
doi: 10.6038/pg20130257
[9] Yang R, Wu N Y, Bai J , et al. Gas hydrate identification in non-BSR region, northern South China Sea[J]. Progress in Geophysics, 2013,28(2):1033-1040.
[10] 宋海滨, 张岭, 江为为 , 等. 水合物的地球物理研究(III):似海底反射[J]. 地球物理学进展, 2003,18(2):182-186.
doi:
[10] Song H B, Zhang L, Jiang W W , et al. Geophysical researches on marine gashydrates(III):bottom simulating reflections[J]. Progress in Geophysics, 2003,18(2):182-186.
[11] 徐华宁, 张光学, 郑晓东 , 等. 井震联合分析预测神狐海域水合物可能的垂向分布[J]. 地球物理学报, 2014,57(10):3363-3371.
doi: 10.6038/cjg20141023
[11] Xu H N, Zhang G X, Zheng X D , et al. Integrated analysis of well logs and seismic data to deduce the possible distribution in depth of gas hydrate in Shenhu Area,South China Sea[J]. Chinese Journal of Geophysics, 2014,57(10):3363-3371.
[12] Ecker C, Dvorkin J, Nur A M . Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 2000,65(2):5653-573.
[13] Tayler M I, Dillon W P, Pecher I A . Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir:new insights from seismic data[J]. Marine Geology, 2000,164:79-89.
doi: 10.1016/S0025-3227(99)00128-0
[14] 宋海滨, 松林修, 杨胜雄 , 等. 海洋水合物的地球物理研究(II):地震方法[J]. 地球物理学进展, 2001,16(3):110-115.
doi:
[14] Song H B, Song L X, Yang S X , et al. Geophysical researches on marine gashydrates(II):seismic methods[J]. Progress in Geophysics, 2001,16(3):110-115.
[15] 沙志彬, 梁金强, 郑涛 , 等. 地震属性在水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013,33(5):185-190.
[15] Sha Z B, Liang J Q, Zheng T , et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013,33(5):185-190.
[16] 王秀娟, 吴时国, 徐宁 . 地震属性参数在识别水合物和游离气分布模式中的应用[J]. 海洋与湖沼, 2006,37(3):271-277.
doi: 10.3321/j.issn:0029-814X.2006.03.012
[16] Wang X J, Wu S G, Xu N . Determining the distribution model of hydrate and free gas occurrence in sediment with seismic attribute parameters[J]. Oceanologia et limnologia sinica, 2006,37(3):271-277.
[17] Mosher D C ,Pipe D J W, Campbell D C.Near-face geology and sediment-failure geohazards of the central Scotian Slope[J]. American Association of Petroleum Geologists Bulletin, 2004,8:703-723.
[18] Mahapatra M, Mahapatra S . Seismic diffraction tomography technique using very fast simulated annealing method for delineating small subsurface features[J]. Journal of Applied Geophysics, 2009,67(2):125-129.
doi: 10.1016/j.jappgeo.2008.10.004
[19] 万晓明, 梁劲, 梁金强 , 等. 叠后波阻抗无井反演技术在T研究区水合物分布预测中的应用[J]. 物探与化探, 2016,40(3):438-444.
doi: 10.11720/wtyht.2016.3.2
[19] Wan X M, Liang J, Liang J Q , et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area[J]. Geophysical & Geochemical Exploration, 2016,40(3):438-444.
[20] 牛滨华, 文鹏飞, 温宁 , 等. 基于BSR的AVO正演估算水合物含量方法的研究[J]. 地球物理学报, 2006,49(1):143-151.
doi: 10.3321/j.issn:0001-5733.2006.01.020
[20] Niu B H, Wen P F, Wen N , et al. Estimation of hydrate concentration based on AVO modeling of BSR[J]. Chinese Journal of Geophysics, 2006,49(1):143-151.
[21] 黄保家 . 琼东南盆地水合物潜力及有利勘探方向[J]. 天然气工业, 1999,19(1):34-40.
[21] Huang B J . Gas potential and its favorable exploration areas in Qiongdongnan basin[J]. Natural Gas Industry, 1999,19(1):34-40.
[22] 王秀娟, 吴时国, 董冬冬 , 等. 琼东南盆地气烟囱构造特点及其与水合物的关系[J]. 海洋地质与第四纪地质, 2008,28(3):103-107.
[22] Wang X J, Wu S G, Dong D D , et al. Characteristics of gas chimney and its relationship to gas hydrate in Qiongdongnan basin[J]. Marine Geology & Quaternary Geology, 2008,28(3):103-107.
[23] 梁金强, 王宏斌, 苏新 , 等. 南海北部陆坡水合物成藏条件及其控制因素[J]. 天然气工业, 2014,34(7):128-134.
[23] Liang J Q, Wang H B, Su X , et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014,34(7):128-134.
[24] 马云, 李三忠, 梁金强 , 等. 南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报:地球科学版, 2012,42(s3):197-203.
[24] Ma Y, Li S Z, Liang J Q , et al. Characteristics and mechanism of submarine landslides in the Qiongdongnan basin, northern South China Sea[J]. Journal of Jilin University:Earth Science Edition, 2012,42(s3):197-203.
[25] 张旭东 . 琼东南海域水合物地震反射特征[J]. 物探与化探, 2014,38(6):1152-1158.
doi: 10.11720/wtyht.2014.6.10
[25] Zhang X D . The seismic reflection characteristics of gas hydrate in southeast Hainan sea area of the South China Sea[J]. Geophysical and Geochemical Exploration, 2014,38(6):1152-1158.
[26] 廖计华, 王华, 孙志鹏 , 等. 琼东南盆地深水区长昌凹陷构造演化及其对层序样式的控制[J]. 中南大学学报:自然科学版, 2012,43(8):3121-3131.
[26] Liao J H, Wang H, Sun Z P , et al. Tectonic evolution and its controlling on sequence pattern of Chang-chang sag, deepwater area of Qiongdongnan basin, South China Sea[J]. Journal of Central South University(Science and Technology), 2012,43(8):3121-3131.
[1] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[2] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[3] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[4] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[5] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[6] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[7] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[8] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[9] 张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
[10] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[11] 李洋, 刘东明, 林振洲, 王宇航, 贾定宇, 欧洋. 木里地区水合物钻孔井壁构造裂缝特征[J]. 物探与化探, 2019, 43(1): 84-89.
[12] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4): 662-667.
[13] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[14] 吕振宇, 边立恩, 于娅, 王军. 地震正演技术在主控物源研究中的应用[J]. 物探与化探, 2018, 42(2): 276-284.
[15] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com