Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (1): 118-126    DOI: 10.11720/wtyht.2018.1.14
  本期目录 | 过刊浏览 | 高级检索 |
大地电磁测深静态效应空间域拓扑处理技术研究
刘桂梅(), 马为, 刘俊昌, 徐新学, 郑国磊, 刘正
天津市地球物理勘探中心,天津 300170
Spatial domain topological processing technique for studying static effect in magnetotelluric sounding
Gui-Mei LIU(), Wei MA, Jun-Chang LIU, Xin-Xue XU, Guo-Lei ZHENG, Zheng LIU
Geophysical Prospecting Center of Tianjin, Tianjin 300170, China
全文: PDF(3982 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

静态效应是大地电磁测深中普遍存在的技术难题,这一影响使得观测结果的处理解释出现无法接受的误差。针对现有大地电磁测深静态效应判别、校正及数据采集装置,提出了以野外实际观测资料为基础的空间域拓扑处理技术。在分析静态效应的成因、表象以及平面波电场分量叠加特性的基础上,从空间采样的实质出发,完善了拓扑点曲线求取公式,获取了同一记录点不同极距的观测结果,提取了连续阵列观测装置中所隐含的变极距观测信息;依据理论模型分析建立了局部不均匀体上不同部位各记录点随拓扑观测极距变化可能出现的静态偏移模型,初步建立了以点进行拟剖面处理,以剖面上所有点的单一频点构成拟平面图来进行拓扑结果图形展示和分析解释的基本方法,并编制了相应的软件包,从理论和实践上初步建立了空间域拓扑处理研究静态效应这一全新的方法技术。实验结果表明,拓扑叠加处理会使资料品质提高,静态偏移效应的判别可从多个方面进行,可有效反映出不均匀体所产生的畸变电场的空间分布,从而可在一定程度上显示出不均匀体的空间位置和分布形态,为认识表层电性结构提供了一种客观的实测信息。同时,由于拓扑处理使观测装置的各种变化所能测得的结果被提取出来,意味着一种新的抑制干扰方法的出现。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘桂梅
马为
刘俊昌
徐新学
郑国磊
刘正
关键词 大地电磁测深静态效应空间域拓扑处理    
Abstract

The static effect is a commonly-existent technical problem in MT method, and its influence could lead to an unacceptable result of the observation data. According to the distinguishing method, correction method and the data collection system, the authors put forward a spatial-domain topological processing method based on the original data. Through the analysis of the cause and representation of the static effect and the superposition characteristics of electric field components, the authors began with the essence of space sampling and completed the formula for obtaining the topological curve, finally got the observation result with different pole distances at the same site and found out the implicit observation information in the observation system of continuous arrays. According to the analytical result of theoretical model, the authors established the model of all the possible static migrations of the record site with the change of pole distance in different parts of local inhomogeneous body and, in addition, established the basic topological result graphic display and interpretation method including using sites to do pseudo-section processing and using the fixed frequency result of all sites in a profile painting pseudo-planar graph. The authors also compiled the software of topological processing and finished this new method of using topological processing method to analyze the static effect of MT both in theory and in application. The test result proves that the topological processing could improve the quality of data. With this technique, the discrimination of static effect could begin with many aspects, could find out the spatial distribution of the distorted electrical field caused by local inhomogeneous body, and could find out the location and spatial distribution of the local inhomogeneous body, thus providing researchers with real information on the surface electric structure. The topological processing could also get the result of changing arrays, and this means the emerging of a new method for inhibiting interference.

Key wordsmagnetotelluric sounding    static effect    spatial-domain topological processing
收稿日期: 2017-04-18      出版日期: 2018-02-20
:  P631  
基金资助:中国地质调查局物探新技术新方法应用推广项目(12120113100300)
作者简介:

作者简介: 刘桂梅(1977-),女,硕士,高级工程师,云南大学地球物理专业,从事地球物理应用研究及管理工作。Email:171543367@qq.com

引用本文:   
刘桂梅, 马为, 刘俊昌, 徐新学, 郑国磊, 刘正. 大地电磁测深静态效应空间域拓扑处理技术研究[J]. 物探与化探, 2018, 42(1): 118-126.
Gui-Mei LIU, Wei MA, Jun-Chang LIU, Xin-Xue XU, Guo-Lei ZHENG, Zheng LIU. Spatial domain topological processing technique for studying static effect in magnetotelluric sounding. Geophysical and Geochemical Exploration, 2018, 42(1): 118-126.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.1.14      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I1/118
  规则不均匀体引起地表二次场畸变示意
  不同测点不同频率视电阻率—极距曲线
  不同测点变极距频率—视电阻率、阻抗相位曲线
  测点全频段极距—视电阻率拟断面
  试验剖面单频点视电阻率—极距断面

a—f=1.13 Hz; b—f=120.22 Hz

  剖面拓扑处理效果

a—实测原始视电阻率断面;b—拓扑处理后视电阻率断面

[1] Weidelt P.The inverse problem of geomagnetic induction[J].Zeitschrift Fuer Geophysik, 1972, 38: 257-289.
[2] Jones A G.On the equivalence of the "Niblett" and "Bostick" transformations in the magnetotelluric method[J]. Journal of Geophysics, 1983, 53: 72-73.
[3] Jones A G.Static shift of magnetotelluric data and its removal in a sedimentary basin environment[J]. Geophysics, 1988, 53(7): 967-978.
[4] Torres-Verdín C, Bostick F X Jr. Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP)[J].Geophysics, 1992, 57(4): 603-622.
[5] Jones A G.The problem of current channeling: a critical review[J].Geophysical Surveys, 1983, 6: 79-122.
[6] Singer B S.Correction for distortions of magnetotelluric fields: limits of validity of the static approach[J].Surveys in Geophysics, 1992, 13(4-5): 309-340.
[7] Ogawa Y.On two-dimensional modeling of magnetotelluric field data[J].Surveys in Geophysics, 2002, 23(2-3): 251-273.
[8] Tournerie B, Chouteau M.Deep conductivity structure in Abitibi, Canada, using long dipole magnetotelluric measurements[J].Geophysical Research Letters, 1998, 25(13): 2317-2320.
[9] Tournerie B, Chouteau M.Analysis of magnetotelluric data along the Lithoprobe seismic line 21 in the Blake River Group, Abitibi, Canada[J].Earth, Planets and Space, 2002, 54(5): 575-589.
[10] Tournerie B, Chouteau M, Marcotte D.Magnetotelluric static shift: Estimation and removal using the cokriging method[J].Geophysics, 2007, 72(1): F25-F34.
[11] Kaufman A A.Tutorial distribution of alternating electrical charges in a conducting medium[J].Geophysical Prospecting, 1985, 33(2): 171-184.
[12] Le Mouel J L, Menvielle M. Geomagnetic variation anomalies and deflection of telluric currents[J].Geophysical Journal International, 1982, 68(3): 575-587.
[13] Wannamaker P E.Resistivity structure of the northern Basin and Range[C].//Eaton G P. The role of heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province. Geothermal Resources Council Special Report. 1983: 345-362.
[14] Wannamaker P E, Hohmann G W, Sanfilipo W A.Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations[J].Geophysics, 1984, 49(1): 60-74.
[15] Swift C M.A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States[D].Massachusetts: Massachusetts Institute of Technology, 1967.
[16] Word D R, Smith H W, Bostick F X Jr. An investigation of the magnetotelluric tensor impedancemethod[R].Texas: Texas Univ Austin Electronics Research Center. 1970.
[17] Sternberg B K, Washburne J C, Pellerin L.Correction for the static shift in magnetotellurics using transient electromagnetic soundings[J].Geophysics, 1988, 53(11): 1459-1468.
[18] Berdichevsky M N, Vanyan L L, Dmitriev V I.Methods used in the U.S.S.R. to reduce near-surface inhomogeneity effects on deep magnetotelluric sounding[J].Physics of the Earth and Planetary Interiors, 1989, 53(3-4): 194-206.
[19] Bahr K.Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion[J].Journal of Geophysics, 1988, 62(2): 119-127.
[20] Groom R W, Bailey R C.Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J].Journal of Geophysical Research, 1989, 94(B2): 1913-1925.
[21] 魏胜, 王家映. 二维大地电磁资料的偏移[J].地球物理学报, 1993, 36(2): 256-263.
[22] 吴炳良, 邵敏. 大地电磁三维静态位移校正方法及其应用效果[J].勘探地球物理进展, 2005, 28(3): 219-222.
[23] 李吉松, 朴化荣. MT法电磁相位移偏移研究[J].石油地球物理勘探, 1994, 29(2): 189-198.
[24] 高红伟, 张胜业. 阻抗张量分解进行大地电磁静校正的研究[J].地质科技情报, 1998, 17(1): 91-96.
[25] 王家映. 电磁阵列剖面法的基本原理[J].地球科学, 1990, 15(S1): 1-11.
[26] 张翔, 陈清礼, 苏朱刘, 等. 同步阵列大地电磁测深法及其在山区的应用技术与效果[J].石油物探, 1999, 38(3): 93-100.
[27] 罗志琼. 用电磁阵列剖面法压制MT静态效应影响的研究[J].地球科学, 1990, 15(S1): 13-22.
[28] 徐新学. 大地电磁测深法在南方海相碳酸盐岩地区油气勘探中的应用研究[D].北京: 中国地质大学(北京), 2006: 35-40.
[29] 强建科, 阮百尧, 熊彬. 浅部不均匀体对目标体电阻率异常影响的研究[J].地球物理学报, 2004, 47(3): 542-548.
[30] 苏鸿尧, 何展翔. 表层电性不均匀对大地电磁测深曲线的畸变研究[J].地质科技情报, 2000, 19(3): 103-106.
[1] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[2] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[5] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[6] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[7] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[8] 彭炎, 张小博, 张健, 张鹏辉, 袁永真, 姜春香. 大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用[J]. 物探与化探, 2020, 44(3): 656-664.
[9] 吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
[10] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[11] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[12] 王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
[13] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[14] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[15] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com