Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (6): 1160-1166    DOI: 10.11720/wtyht.2017.6.23
  论文 本期目录 | 过刊浏览 | 高级检索 |
哈拉湖坳陷与木里坳陷天然气水合物成藏条件对比
张鹏辉1, 2, 3, 何梅兴1, 2, 3, 白大为1, 2, 3, 杜炳锐1, 2, 3, 裴发根1, 2, 3, 张小博1, 2, 3, 吕琴音1, 2, 3
1.国土资源部地球物理电磁法探测技术重点实验室,河北 廊坊 065000;
2.国家现代地质勘查技术研究中心,河北 廊坊 065000;
3.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
A comparative study of accumulation conditions of gas hydrates in the Hala Lake Sag and Muli Sag
ZHANG Peng-Hui1, 2, 3, HE Mei-Xing1, 2, 3, BAI Dai-Wei1, 2, 3, DU Bing-Rui1, 2, 3, PEI Fa-Gen1, 2, 3, ZHANG Xiao-Bo1, 2, 3, LV Qin-Yin1, 2, 3
1. Key Laboratory of Geophysical Electromagnetic Prospecting Technology, Ministry of Land and Resources, Langfang 065000, China;
2. National Modern Geological Exploration Technology Research Center, Langfang 065000, China;
3. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
全文: PDF(759 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在已发现水合物的木里坳陷冻土条件、烃源岩条件和温压环境等水合物成藏条件研究的基础上,通过类比法探讨哈拉湖坳陷天然气水合物的发育和赋存潜力。结果表明:两个坳陷具有相近的冻土层厚度、基本一致的温压条件等,指示哈拉湖坳陷基本具备天然气水合物形成的环境条件。在沉积演化、冻土层物质组成、烃类气体保存等方面两者具有较大的差异,木里坳陷的地层发育较完整,冻土层以沉积岩石为主,地球化学具有明显异常;哈拉湖坳陷石炭纪和侏罗纪发生沉积间断,三叠统含油气系统遭受破坏,冻土层物质以第四纪沉积为主,封盖能力差。埋藏较深的二叠统烃源岩可能能够为天然气水合物的形成提供烃类气体,推测哈拉湖坳陷局部隆起部位可能是天然气水合物赋存的有利区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:On the basis of researches on the hydrate accumulation conditions of permafrost, source rock and temperature-pressure of the hydrate-discovered Muli Sag, geological analogue methods were applied to analyzing the development and occurrence potential of natural gas hydrate in the Hala Lake Sag. The results show that the Hala Lake Sag and Muli Sag have the same permafrost thickness and consistent temperature-pressure conditions, which indicates that the Hala Lake Sag basically possesses the environmental conditions for the gas hydrate formation. With regard to sedimentary evolution, material composition of the permafrost and hydrocarbon gas preservation, they display notable differences. Formations in the Muli Sag are well developed, the permafrost layer is primarily sedimentary rock, and distinct geochemical anomalies were detected. However, a depositional hiatus occurred between the Carboniferous and Jurassic in the Hala Lake Sag, the Triassic petroleum system was destroyed, and the Quaternary sediments are the main materials of permafrost, with poor capping capacity. Deeply buried Permian source rocks could provide hydrocarbon gases for gas hydrate formation. It is inferred that the local uplift of the Hala Lake Sag is a favorable region for the formation of gas hydrate.
收稿日期: 2017-09-08      出版日期: 2017-12-20
:  P631  
基金资助:国家高技术研究发展计划“863计划”课题(2012AA061403); 国家127专项项目(GZHL20110324,GZH201400305); 中国地质调查局地质调查项目(DD20160224); 中央公益性科研院所基本科研业务费专项基金项目(AS2014J08)
作者简介: 张鹏辉(1987-),男,硕士,工程师,主要从事石油地质和应用地球物理研究工作。
引用本文:   
张鹏辉, 何梅兴, 白大为, 杜炳锐, 裴发根, 张小博, 吕琴音. 哈拉湖坳陷与木里坳陷天然气水合物成藏条件对比[J]. 物探与化探, 2017, 41(6): 1160-1166.
ZHANG Peng-Hui, HE Mei-Xing, BAI Dai-Wei, DU Bing-Rui, PEI Fa-Gen, ZHANG Xiao-Bo, LV Qin-Yin. A comparative study of accumulation conditions of gas hydrates in the Hala Lake Sag and Muli Sag. Geophysical and Geochemical Exploration, 2017, 41(6): 1160-1166.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.6.23      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I6/1160
[1] Lee S Y, Gerald D H. Methane hydrates potential as a future energy source[J]. Fuel Processing Technology, 2001,71:181-186.
[2] Kvenvolden K A. Potential effects of gas hydrate on human welfare[C]//Proceedings of National Academy of Science Colloquium,1996,96:3420-3426.
[3] Klapp S A, Murshed M M, Pape T, et al. Mixed gas hydrate structures at the Chapopote Kmoll, Southern Gulf of Mexico[J]. Earth and Planetary Science Letters,2010,299(1-2):207-217.
[4] Dallimore S R, Collett T S. Summary and implication of the Mallik 2002 gas hydrate production research well program[C]//Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin 585, 2005:1-36.
[5] Williams T E, Millheim K, King B. Methane hydrate production from Alaskan permafrost: Technical progress report[EB/OL]. http://www.osti.gov/energycitations/servlets/purl/828282-kfvMhc/native/828282.pdf.
[6] Makogon Y F, Holditch S A, Makogon T Y. Russian field illustrates gas-hydrate production[J]. Oil and Gas Journal,2005,103(5):43-50.
[7] 祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.
[8] 卢振权,祝有海,张永勤,等.青海省祁连山冻土区天然气水合物基本地质特征[J].矿床地质,2010,29(1):182-191.
[9] 付少英.烃类成因对天然气水合物成藏的控制[J].地学前缘,2005,12(3):263-267.
[10] 王健,邱文弦,赵俐红.天然气水合物发育的构造背景分析[J].地质科技情报,2010,29(2):100-106.
[11] Collett T S, Dallimore S R. Permafrost related natural gas hydrate[C]//Natural gas hydrate in Oceanic and Permafrost Environments. The Netherlands: Kluwer Academic Pulishers, 2000:43-60.
[12] Collett T S.Energy resource potential of natural gas hydrates[J]. AAPG,2002,86(11):1971-1992.
[13] 卢振权,翟刚毅,文怀军,等.青海木里三露天冻土区天然气水合物形成与分布地质控制因素研究[J].现代地质,2015,29(5):1002-1013.
[14] 翟刚毅,卢振权,卢海龙,等.祁连山冻土区天然气水合物成矿系统[J].矿物岩石,2014,34(4):79-92.
[15] 胡超.南祁连盆地三叠纪构造-沉积演化研究[D].兰州:西北大学,2011.
[16] 谭富荣,周立发.南祁连盆地二叠系沉积特征及其充填模式[J].河北工程大学学报:自然科学版,2010(3):62-65.
[17] 谢其峰.南祁连盆地二叠系三叠系构造沉积特征与油气地质条件[D]. 兰州:西北大学,2012.
[18] 吴青柏.多年冻土区天然气水合物研究综述[J].地球科学进展,2008,23(2):111-119.
[19] 庞守吉,苏新,等.祁连山冻土区天然气水合物地质控制因素分析[J].地学前缘,2013,20(1):223-239.
[20] 王平康,祝有海,卢振权,等.祁连山冻土区天然气水合物成藏体系中自生黄铁矿地球化学特征与成因探讨[J].中国科学:地球科学,2014,44:1283-1297.
[21] 王佟,刘天绩,邵龙义,等.青海木里煤田天然气水合物特征与成因[J].煤田地质与勘探, 2009,37(6):26-30.
[22] 卢振权,祝有海,刘晖,等.祁连山冻土区含天然气水合物层段的油气显示现象[J].现代地质,2013,27(1):231-238.
[23] 卢振权,唐世琪,王伟超,等.青海木里三露天冻土天然气水合物气源性质研究[J].现代地质,2015,29(5):1002-1013.
[24] 翟刚毅,卢振权,等.祁连山冻土区天然气水合物成矿系统[J].矿物岩石,2014,34 (4):79-92.
[25] 祝有海,赵省民,卢振权.中国冻土区天然气水舍物的找矿选区及其资源潜力[J].天然气工业,2011,31(1):13-19.
[26] 曹代勇,刘天绩,等.青海木里地区天然气水合物形成条件分析[J].中国煤炭地质,2009,21(9):3-6.
[27] 符俊辉,周立发.南祁连盆地石炭—侏罗纪地层区划及石油地质特征[J].西北地质科学,1998,19(2):47-54.
[28] 符俊辉,周立发.南祁连盆地三叠纪地层及石油地质特征[J].西北地质科学,2000,21(2):64-72.
[29] 谢其锋,周立发,马国福,等.南祁连盆地三叠系烃源岩有机地球化学特征[J].北京大学学报:自然科学版,2011(6):1034-1040.
[30] 谢其锋,周立发,蔡元峰,等.南祁连盆地二叠系海相烃源岩地球化学特征及其对物源属性和古环境的约束[J].地质学报,2015,89(7):1288-1301.
[31] 袁二军,崔彬,冯小伟,等.南祁连盆地东北部木里地区三叠系尕勒得寺组烃源岩评价[J].中国矿业,2013,22(S):163-167.
[32] 路萍,王苏里.南祁连盆地木里坳陷上三叠统尕勒德寺组泥质岩类烃源岩评价[J].地下水,2013,35(1):122-123.
[33] 吕苗,王苏里.南祁连盆地哈拉湖坳陷上三叠统尕勒德寺组泥质岩类烃源岩评价[J].中国西部科技,2013,12(8):21-22.
[34] 朱晓莉,吴磊章,赵军辉.南祁连盆地哈拉湖坳陷中三叠统大加连组烃源岩评价[J].地下水,2013,35(1):119-121.
[35] 孙忠军,杨志斌,秦爱华,等.中纬度带天然气水合物地球化学勘查技术[J].吉林大学学报:地球科学版,2014,44(4):1063-1070.
[36] 石森.气体水合物的基本特征、形成条件及成因初探[J].矿物岩石,1999(3):100-104.
[37] 孙忠军,王惠艳,张舜尧,等. 祁连山哈拉湖坳陷天然气水合物地球化学勘查[J].物探与化探,2017,41(6):1152-1159.
[38] 林振洲,孔广胜,潘和平,等.木里地区天然气水合物储层参数计算[J].物探与化探,2017,41(6):1099-1104.
[39] 龚建明,张剑,陈小慧,等.青藏高原祁连山与乌丽冻土区水合物成藏条件研究[J].石油天然气学报,2014,02:1-6.
[40] 祝有海,张永勤.祁连山冻土区天然气水合物科学钻探工程概况[J].地质通报,2011, 30(12):1816-1822.
[41] 傅连珍,胡道功,张绪教,等.基于GIS空间分析模型的冻土研究——以祁连山木里地区为例[J].高原山地气象研究,2015(2):59-64.
[42] 蒋艾林,陈利敏,秦荣芳,等.青海木里三露天井田构造沉降史分析[J].现代地质,2015,29 (5):1096-1102.
[43] 李吉均.青藏高原隆升与晚新生代环境变化[J].兰州大学学报:自然科学版,2013(2): 154-159.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com