Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (6): 1050-1059    DOI: 10.11720/wtyht.2017.6.09
  论文 本期目录 | 过刊浏览 | 高级检索 |
天然气水合物储层弹性波最小二乘逆时偏移研究
李金丽1, 2, 曲英铭3, 刘建勋1, 2, 岳航羽1, 2, 李培1, 2, 陈德元1, 2
1.国家现代地质勘查工程技术研究中心,河北 廊坊 065000;
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000;
3.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
A study of elastic least-squares reverse time migration for gas hydrate reservoirs
LI Jin-Li1, 2, QU Ying-Ming3, LIU Jian-Xun1, 2, YUE Hang-Yyu1, 2, LI Pei1, 2, CHEN De-Yuan1, 2
1.National Modern Geological Exploration Technology Research Center,Langfang 065000,China;
2.Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China;
3.School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China
全文: PDF(667 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 天然气水合物的弹性性质相比于周围岩层有明显的差异。传统声波成像方法采用声波近似,无法对其弹性性质进行准确地描述,弹性波偏移方法的成像结果分辨率低、中深部成像能量弱、振幅不均衡,存在低频噪声和采集脚印。为此,文中发展了一种弹性波最小二乘逆时偏移方法,在该方法中,推导了准确的弹性波最小二乘理论框架下的偏移算子和反偏移算子。为了提高计算效率并节省内存,引入了基于编码技术的混叠数据弹性波最小二乘方法,将多炮数据叠加为一个超道集,并采用编码技术压制串扰噪声。通过对两个含天然气水合物模型的试算验证了本文方法对天然气水合物储层成像的有效性及优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The elastic properties of gas hydrate are obviously different from those of the surrounding rocks.The traditional acoustic imaging method using acoustic approximation cannot accurately describe the elastic properties.The imaging results of elastic wave migration method have low resolution,weak energy in deep regions,imbalance amplitude, low frequency noise and acquisition footprint.For this reason,the authors have developed an elastic least-squares inverse time migration method.In this method,an accurate migration operator and demigration operator in the framework of the elastic least squares theory are derived.To improve the computation efficiency and save memory,the authors introduced the multisource elastic least-squares migration method based on encoding technique,in which multiple data are added into a supershot and the encoding technique is used to suppress the crosstalk.The effectiveness and superiority of the proposed method for gas hydrate reservoir imaging are verified by the simulation results of two gas hydrate models.
收稿日期: 2017-09-08      出版日期: 2017-12-20
:  P631.4  
基金资助:国家高技术研究发展计划(“863”计划)课题(2012AA061403); 中国地质调查局地质调查项目(DD20160224); 中央级公益性科研院所基本科研业务费专项基金资助项目(AS2017J11)
作者简介: 李金丽(1989-),女,硕士研究生,主要从地震数据处理及偏移成像方面的研究工作。
引用本文:   
李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
LI Jin-Li, QU Ying-Ming, LIU Jian-Xun, YUE Hang-Yyu, LI Pei, CHEN De-Yuan. A study of elastic least-squares reverse time migration for gas hydrate reservoirs. Geophysical and Geochemical Exploration, 2017, 41(6): 1050-1059.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.6.09      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I6/1050
[1] Zanoth S R,Saenger E H,Krüger O S,et al.Leaky mode:A mechanism of horizontal seismic attenuation in a gas-hydrate-bearing sediment[J].Geophysics,2007,72(5):E159-E163.
[2] Stoll R D,Bryan G M.Physical properties of sediments containing gas hydrates[J].J. Geophys. Res.,1979,84:1629-1634.
[3] Sloan E D.Clathrate hydrates of natural gases[M].Marcel Dekker,1990.
[4] Kvenvolden K A.Aprimer on gas hydrates. U. S. Geological Survey[J].Professional Paper 1570,1993:555-561.
[5] Holbrook W S,Hoskins H,Wood W T,et al.Methane hydrate and free gas on the Blake Ridge from vertical seismic profling[J].Science,1996,273:1840-1843.
[6] Guerin G,Goldberg D.Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta,Canada[J].Journal of Geophysical Research,2002,107:1029-1085.
[7] Stoll R D,Bryan G M.Physical properties of sediments containing gas hydrates[J].J. Geophys. Res.,1979,84:1629-1634.
[8] Bangs N L B,Sawyer D S,Golvovchenko X.Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction[J].Geology,1993,21:905-908.
[9] Hyndman R D,Spence G D.A seismic study of methane hydrate marine bottom simulating reflectors[J].J. Geophys. Res.,1992,97:6683-6698.
[10] 徐明才,刘建勋,柴铭涛,等.青海省天峻县木里地区天然气水合物地震响应特征[J].地质通报,2011,30 (12):1910-1917.
[11] 徐明才,刘建勋,柴铭涛,等.青海木里地区天然气水合物反射地震试验研究[J].地质与勘探,2012,48(6):1180-1187.
[12] Akihisa K,Tezuka K,Senoh O,et al.Well log evaluation of gas hydrate saturation in the miti nankai-trough well,offshore south east Japan[J].SPWLA 43 rd annual logging symposium,2002.
[13] Claerbout J.Earth soundings analysis:Processing versus Inversion[J].Black-well Scientific,1992.
[14] Nemeth T,Wu C,Schuster G.Least-squares migration of incomplete reflection data[J].Geophysics,1999,64(1):208-221.
[15] Kuehl H,Sacchi M.Least-squares split-step migration using the Hartley transform[C]//Expanded Abstracts of the 69 th Annual SEG Meeting.Society of Exploration Geophysicists,1999:1548-1551.
[16] LeBras R,Clayton R.An iterative inversion of back-scattered acoustic waves[J].Geophysics,1988,53(4):501-508.
[17] 杨其强,张叔伦.最小二乘傅立叶有限差分偏移[J].地球物理学进展,2008,23(2):433-437.
[18] 罗国安,武威,李合群,等.快速叠后偏移反褶积算法及应用[J].石油地球物理勘探,2010,45(6):844-849.
[19] 黄建平,李振春,孔雪,等.碳酸盐岩裂缝型储层最小二乘偏移成像方法研究[J].地球物理学报,2013,56(5):1-9.
[20] 黄建平,曹晓莉,李振春,等.最小二乘逆时偏移在近地表高精度成像中的应用[J].石油地球物理勘探,2014,(1):107-112.
[21] 刘玉金,李振春.扩展成像条件下的最小二乘逆时偏移[J].地球物理学报,2015,10:3771-3782.
[22] 郭书娟,马方正,段心标,等.最小二乘逆时偏移成像方法的实现与应用研究 [J].石油物探,2015,(3):301-308.
[23] 曲英铭,黄建平,李振春,等.分层映射法起伏自由地表弹性波正演模拟与波场分离[J].石油地球物理勘探,2016,(2):261-271.
[24] Qu Y,Huang J,Li Z,et al.A hybrid grid method in an auxiliary coordinate system for irregular fluid-solid interface modeling [J].Geophysical Journal International,2017,208(3):1540-1556.
[25] Qu Y,Li Z,Huang J,et al.Elastic full-waveform inversion for surface topography [J].Geophysics,2017,82(5):R269-R285.
[26] 曲英铭,黄建平,李振春,等.分层坐标变换法起伏自由地表弹性波叠前逆时偏移[J].地球物理学报,2015,(8):2896-2911.
[27] Dai W,Fowler P,Schuster G.Multi-source least-squares reverse time migration[J].Geophysical Prospecting,2012,60(4):681-695.
[28] Plessix R E,Mulder W A.Frequency-domain finite-difference amplitude- preserving migration[J].Geophysical Journal International,2004,157(3):975-987.
[29] Plessix R.A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[J].Geophysical Journal International,2006,167(2):495-503.
[30] Köhn D,De Nil D,Kurzmann A,et al.On the influence of model parametrization in elastic full waveform tomography[J].Geophysical Journal International,2012,191:325-345.
[31] Qu Y,Li Z,Huang J,et al.Viscoacoustic anisotropic full waveform inversion[J].Journal of Applied Geophysics,2017,136:484-497.
[32] Qu Y,Li Z,Huang J,et al.Multi-scale full waveform inversion for areas with irregular surface topography in an auxiliary coordinate system[J].Exploration Geophysics, 2016.
[33] Qu Y,Li Z,Huang J,et al.Irregular surface FWI in an auxiliary coordinate system based on the first-order velocity-stress equation[C]//Expanded Abstracts of the 86 th Annual SEG Meeting.Society of Exploration Geophysicists,2016:1079-1083.
[34] Liu Y,Symes W W,SLi Z.Multisource least-squares extended reverse-time migration with preconditioning guided gradient method[J].SEG Technical Program,Expanded Abstracts,2013:3709-3715.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com