Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (3): 505-512    DOI: 10.11720/wtyht.2017.3.16
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于支持向量机回归的电阻率成像反演
董莉1,2, 江沸菠2,3, 戴前伟2, 傅宇航4
1.湖南涉外经济学院 信息科学与工程学院,湖南 长沙 410205;
2.中南大学 地球科学与信息物理学院,湖南 长沙 410083;
3.湖南师范大学 物理与信息科学学院,湖南 长沙 410081;
4.湖南送变电勘察设计咨询有限公司, 湖南 长沙 410114
Electrical resistivity imaging inversion based on support vector regression
DONG Li1,2, JIANG Fei-Bo2, 3, DAI Qian-Wei2, FU Yu-Hang4
1. Department of Information Science and Engineering, Hunan International Economics University, Changsha 410205, China;
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
3. College of Physics and Information Science, Hunan Normal University, Changsha 410081, China;
4. Hunan Power Transmission and Distribution Survey and Design Consulting Co., Ltd., Changsha 410114, China
全文: PDF(3445 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以电阻率成像为应用背景,研究了在有限学习样本下,支持向量机回归在电法反演中的建模方法,对反演建模时样本划分、数据预处理、反演流程、评估指标等关键技术进行了分析,给出了一种基于交叉验证(CV)的支持向量机参数寻优方法;通过比较RBF核函数在不同的参数ε下对反演结果的影响,建立了优化的电阻率成像SVR反演模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Support Vector Regression is a Learning Machine based on statistic learning theory. It has better performance of generalization and fitting precision than traditional neural network inversion under the condition of small samples learning. Under the application background of electrical resistivity imaging, SVR inversion method based on limited learning samples was studied in this paper. The key issues of sample division and data preprocessing, inversion flow and evaluation indicators were analyzed. A multi-parameter optimization method based on cross validation was presented. The optimized SVR inversion model by comparing the influence of RBF kernel functions with different ε values with the inversion results was established. Data simulation and model inversion show that the proposed inversion method has better inversion accuracy and imaging quality than traditional least squares inversion and RBFNN inversion, and is equivalent to BPNN, but it has disadvantage of only one output dimension.
收稿日期: 2016-05-20      出版日期: 2017-06-20
:  P631  
基金资助:国家自然科学基金资助项目(41604117、41374118); 中国博士后科学基金资助项目(2015M580700); 湖南省教育厅优秀青年基金资助项目(15B138); 湖南省科技创新计划资助项目(2016JJ3086)
通讯作者: 江沸菠(1982-),男,博士,博士后,讲师;从事电磁法非线性反演和人工智能工程应用研究等工作。Email:jiangfeibo@126.com
作者简介: 董莉(1982-),女,博士,讲师,主要研究方向为电磁法非线性反演。Email:48757467@qq.com
引用本文:   
董莉, 江沸菠, 戴前伟, 傅宇航. 基于支持向量机回归的电阻率成像反演[J]. 物探与化探, 2017, 41(3): 505-512.
DONG Li, JIANG Fei-Bo, DAI Qian-Wei, FU Yu-Hang. Electrical resistivity imaging inversion based on support vector regression. Geophysical and Geochemical Exploration, 2017, 41(3): 505-512.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.3.16      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I3/505
[1] Shima H.2-D and 3-D resistivity image reconstruction using crosshole data[J].Geophysics,1992,57(10):1270-1281.
[2] Loke M H,Barker R D.Least-squares deconvolution of apparent resistivity pseudosections[J].Geophysics,1995,60(6):1682-1690.
[3] Zohdy A A R.A new method for the automatic interpretation of Schlumbeger and Wenner sounding curves[J].Geophysics,1989,54(2):245-253.
[4] Lesur V,Cuer M,Straub A.2-D and 3-D interpretation of electrical tomography measurements,Part2:The inverse problem[J].Geophysics,1999,64(2):396-402.
[5] Singh U K,Tiwari R K,Singh S B.Neural network modeling and prediction of resistivity structures using VES Schlumberger data over a geothermal area[J].Computers & Geosciences,2013,52:246-257.
[6] Singh U K,Tiwari R K,Singh S B.One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—a case study[J].Computers & geosciences,2005,31(1):99-108.
[7] El-Qady G,Ushijima K.Inversion of DC resistivity data using neural networks[J].Geophysical prospecting,2001,49(4):417-430.
[8] 徐海浪,吴小平.电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584 589.
[9] Neyamadpour A,Taib S,Abdullah W A T W.Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions:a MATLAB application[J].Computers & Geosciences,2009,35(11):2268-2274.
[10] Zhang L Y,Liu H F.The application of ABP method in high-density resistivity method inversion[J].Chinese Journal of Geophysics.(in Chinese),2011,54(1):22764-23371.
[11] Ho T L.3-D inversion of borehole-to-surface electrical data using a back-propagation neural network[J].Journal of Applied Geophysics,2009,68(4):489-499.
[12] Neyamadpour A,Wan Abdullah W A T W,Taib S,et al.3D inversion of DC data using artificial neural networks[J].Studia Geophysica et Geodaetica,2010,54(3):465-485.
[13] 戴前伟,江沸菠,董莉.基于汉南-奎因信息准则的电阻率层析成像径向基神经网络反演[J].地球物理学报,2014,57(4):1335-1344.
[14] 史峰,王小川,郁磊.Matlab神经网络案例分析[M].北京:北京航空航天大学出版社,2010.
[15] Pidlisecky A,Knight R.FW2_5D:A MATLAB 2.5-D electrical resistivity modeling code[J].Computers & Geosciences,2008,34(12):1645-1654.
[16] Wang H S,Wang Y N,Wang Y C.Cost estimation of plastic injection molding parts through integration of PSO and BP neural network[J].Expert Systems with Applications,2013,40(2):418-428.
[17] Vapnik V.Vapnik.Statistical learning theory[ M].New York,NY:Wiley,New York,NY,1998.
[18] 闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009,35(14):218-220.
[19] 邴萍萍,曹思远,路交通.基于支持向量机的非线性AVO反演[J].地球物理学报, 2012,55(3):1025-1032.
[20] 易世华,刘代志,何元磊,等.变化地磁场预测的支持向量机建模[J].地球物理学报,2013,56(1):127-135.
[21] 江沸菠,戴前伟,董莉.基于主成分—正则化极限学习机的超高密度电法非线性反演[J].地球物理学报,2015,58(9):3356-3369.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com