Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (3): 468-477    DOI: 10.11720/wtyht.2017.3.11
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
世界数字化磁异常图的编制技术
杜劲松1,2, 陈超1, 梁青1
1.中国地质大学(武汉) 地球物理与空间信息学院 地球内部多尺度成像湖北省重点实验室,湖北 武汉 430074;
2.中国科学院 测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北 武汉 430077
Mapping techniques for the World Digital Magnetic Anomaly Map (WDMAM)
DU Jin-Song1,2, CHEN Chao1, LIANG Qing1
1.Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,China;
2.State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China
全文: PDF(5291 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 世界数字化磁异常图是建立全球地球物理场的基本图件之一,编制该图件旨在服务教学、工业与科学研究,其全球覆盖性使得世界范围的地球科学对比研究与系统研究成为可能。深入认识该图件的数据来源、处理过程、分辨率与可靠性分布,有利于正确与合理地使用该图件与数据。因此,笔者首先介绍了世界磁异常图的研究背景、科学意义与发布形式,其次阐述了编图的基本原则,归纳与分析了编图的相关技术,然后描述了目前的编图进展,最后总结了编图的瓶颈、难点与不合理之处,并且相应地提出了编图的改进措施,期望为我国将来的世界磁异常数据汇编提供参考资料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:As a basic map of the Earth's global geophysical fields, the World Digital Magnetic Anomaly Map (WDMAM) aims at serving education, industry and science. Especially, the global coverage of the map makes possible world-wide comparative researches and global systematic studies of geosciences. Realizing original data sources, processes and distributions of resolution and reliability of the WDMAM is certainly very important and helpful to correctly and properly using this data set in actual applications. Therefore, in this paper, the authors introduce the background, scientific significances and form of the map, present the basic principles of mapping, analyze the corresponding techniques, and deal with the mapping progress. On such a basis, the authors summarize the current bottlenecks and difficulties as well as some points which should be further improved. In addition, the authors correspondingly propose the possible development approaches of the future mapping and provide some basic references for compiling the worldwide magnetic anomaly data by China's experts.
收稿日期: 2016-05-13      出版日期: 2017-06-20
:  P631  
基金资助:湖北省自然科学基金面上资助项目(2015CFB361); 中国博士后科学基金面上资助项目(2015M572217); 大地测量与地球动力学国家重点实验室开放基金课题(SKLGED2015-5-5-EZ); 地球内部多尺度成像湖北省重点实验室开放基金项目(SMIL-2015-06); 国家科技部国际科技合作项目专项(2010DFA24580)
通讯作者: 陈超(1960-),男,博士,教授,博士生导师,主要从事区域地球物理方面的教学与研究工作。Email: chenchao@cug.edu.cn
作者简介: 作者简介:杜劲松(1985-),男,博士,博士后,讲师,主要从事卫星磁力测量及其地学应用研究工作。Email: jinsongdu@cug.edu.cn
引用本文:   
杜劲松, 陈超, 梁青. 世界数字化磁异常图的编制技术[J]. 物探与化探, 2017, 41(3): 468-477.
DU Jin-Song, CHEN Chao, LIANG Qing. Mapping techniques for the World Digital Magnetic Anomaly Map (WDMAM). Geophysical and Geochemical Exploration, 2017, 41(3): 468-477.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.3.11      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I3/468
[1] 徐文耀,白春华,康国发.地壳磁异常的全球模型[J].地球物理学进展,2008,23(3):641-651.
[2] 黄晓颖,边少锋.国际高精度地磁模型研究进展[J].海洋测绘,2010,30(3):79-81.
[3] Reeves C.The first magnetic anomaly map of the world [J].The Leading Edge,2008,27(1):32-33.
[4] Purucker M.Magnetic anomaly map of the world [J].EOS Transactions American Geophysical Union,2007,88(25):263.
[5] 张昌达.世界磁异常图[J].物探与化探,2008,32(6):581-585.
[6] Maus S.An ellipsoidal harmonic representation of earth��s lithospheric magnetic field to degree and order 720 [J].Geochemistry,Geophysics,Geosystems,11(6),Q06015,doi:10.1029/2010GC003026.
[7] Lesur V,Hamoudi M,Choi Y,et al.Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) [J].Earth Planets and Space,2016,68,doi:10.1186/s40623-016-0404-6.
[8] Reeves C,Macnab R,Maschenkov S.Compiling all the world��s magnetic anomalies [J].EOS Transactions American Geophysical Union,1998,79(28):338.
[9] Maus S,Sazonova T,Hemant K,et al.National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map [J].Geochemistry,Geophysics,Geosystems,2007,8(6),Q06017,doi:10.1029/2007GC001643.
[10] 王乃东.有关1:25万航磁系列图的几个问题[J].物探与化探,2007,31(5):459-464.
[11] Hamoudi M,Thébault E,Lesur V,et al.GeoForschungsZentrum Anomaly Magnetic Map (GAMMA):A candidate model for the World Digital Magnetic Anomaly Map [J].Geochemistry,Geophysics,Geosystems,2007,8(6),Q06023,doi:10.1029/2007GC001638.
[12] Maus S,Barckhausen U,Berkenbosch H,et al.EMAG2:A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite,airborne, and marine magnetic measurements [J].Geochemistry,Geophysics,Geosystems,2009,10(8),Q08005,doi:10.1029/2009GC002471.
[13] 陈洁,高德章,温宁,等.南海磁场特征研究[J].地球物理学进展,2010,25(2):376-388.
[14] Sabaka T J,Olsen N,Purucker M E.Extending comprehensive models of the Earth��s magnetic field with Ørsted and CHAMP data[J].Geophysical Journal International,2004,159(2):521-547.
[15] Ravat D,Hildenbrand T,Roest W.New way of processing near-surface magnetic data:the utility of the comprehensive model of the magnetic field[J].The Leading Edge,2003,22(8):784-785.
[16] Hemant K,Thébault E,Mandea M,et al.Magnetic anomaly map of the world:merging satellite,airborne,marine and ground-based magnetic data sets[J].Earth and Planetary Science Letters,2007,260(1/2):56-71.
[17] 尹航,周坚鑫,舒晴,等.编制1:500万中国海陆磁力异常图关键技术[J].地球物理学进展,2015,30(5):2107-2112.
[18] 骆遥,王林飞,何辉.航空地球物理勘探资料微调平处理[J].物探与化探,2012,36(5):851-855.
[19] Müller R D,Sdrolias M,Gaina C,et al.Age, spreading rates and spreading asymmetry of the world��s ocean crust[J].Geochemistry,Geophysics,Geosystems,2008,9(4),Q04006,doi:10.1029/2007GC001743.
[20] Dyment J,Choi Y,Hamoudi M,et al.Global equivalent magnetization of the oceanic lithosphere[J].Earth and Planetary Science Letters,2015,430:54-65,doi:10.1016/j.epsl.2015.08.002.
[21] Korhonen J V,Fairhead J D,Hamoudi M,et al.Magnetic anomaly Map of the World, scale 1:50,000,000 1st edition[M].Paris:Commission for the Geological Map of the World, UNESCO,2007.
[22] Dyment J,Arkani-Hamed J.Equivalent source magnetic dipoles revised[J].Geophysical Research Letters,1998,25(11):2003-2006.
[23] Quesnel Y,Catalán M,Ishihara T.A new global marine magnetic anomaly data set[J].Journal of Geophysical Research,2009,114(B4):115-123.
[24] Moritz H.Advanced Physical Geodesy[M].Germany:Herbert Wichmann,Karlsruhe,1980.
[25] Wessel P,Smith W.Free software helps map and display data[J].EOS Transactions of the American Geophysical Union,1991,72(41):441,445-446.
[26] Langel R A,Hinze W J.The Magnetic Field of the Earth��s Lithosphere:The Satellite Perspective[M].New York:Cambridge University Press,1998.
[27] Maus S,Lühr H,Rother M,et al.Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements[J].Geochemistry,Geophysics,Geosystems,2007,8(5):622-634.
[28] Maus S,Yin F,Lühr H,et al.Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements[J].Geochemistry,Geophysics,Geosystems,2008,9(7):1335-1346.
[29] Catalán M,Dyment J,Choi Y,et al.Making a better magnetic map[J].EOS Transactions American Geophysical Union,2016,97,doi:10.1029/2016EO054645.
[30] Lesur V,Rother M,Vervelidou F,et al.Post-processing scheme for modeling the lithospheric magnetic field[J].Solid Earth,2013,4(2):105-118.
[31] Dyment J,Arkani-Hamed J.Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world��s oceans[J].Journal of Geophysical Research,1998,103(B7):15423-15442.
[32] Bird P.An updated digital model of plate boundaries[J].Geochemistry,Geophysics,Geosystems,2003,4(3):101-112.
[33] Thébault E,Vervelidou F.A statistical spatial power spectrum of the Earth��s lithospheric magnetic field[J].Geophysical Journal International,2015,201(2):605-620.
[34] Thébault E,Vigneron P,Maus S,et al.Swarm SCARF Dedicated Lithospheric Field Inversion chain[J].Earth Planets and Space,2013,65(11):1257-1270.
[35] Kotsiaros S,Finlay C C,Olsen N.Use of along-track magnetic field differences in lithospheric field modeling[J].Geophysical Journal International,2015,200(2):878-887.
[36] Olsen N,Hulot G,Lesur V,et al. The Swarm initial field model for the 2014 geomagnetic field[J].Geophysical Research Letters,2015,42(4):1092-1098.
[37] 杜劲松.基于Swarm卫星磁测数据的全球岩石圈磁性结构建模[D].武汉:中国地质大学(武汉),2016.
[38] Ravat D,Whaler M,Pilkington T,et al.Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada[J].Geophysics,2002,67(2):546-554.
[39] Purucker M E,Connerney E P,Blakely R J,et al.Icebase:A suborbital survey to map geothermal heat flux under an ice sheet[C]//Geophysical Research Abstracts,2013.
[40] Cohen Y,Menvielle M,Lemouel J L.Magnetic Measurements aboard a Stratospheric Balloon[J].Physics of the Earth and Planetary Interiors,1986,44(4):348-357.
[41] 杜劲松,陈超.基于卫星磁测数据的全球岩石圈磁场建模进展与展望[J].地球物理学进展,30(3):1017-1033.
[42] Du J,Chen C,Lesur V,et al.Magnetic potential,vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system[J].Geophysical Journal International,2015,201(3):1977-2007.
[43] 杜劲松.基于球坐标系的卫星磁异常数据处理与正反演方法研究[D].武汉:中国地质大学(武汉),2014.
[44] Maus S,Paynter R,Biegert E,et al.On the coherence between US and Australian magnetic compilations and CHAMP satellite magnetic measurements[C]//82th Annual Meeting of SEG,2012,doi:10.1190/segam2012-1386.1.
[45] 熊盛青,范正国,张洪瑞,等.中国陆域航磁系列图(1:5 000 000)及其说明书[M].北京:地质出版社,2013.
[46] 黄旭钊.《中国陆域航磁系列图(1:5 000 000)及其说明书》出版发行[J].物探与化探,2014,38(2):408.
[47] 管志宁,安玉林.区域磁异常定量解释[M].北京:地质出版社,1991.
[48] Arkani-Hamed J,Dyment J.Magnetic potential and magnetization contrasts of Earth��s lithosphere[J].Journal of Geophysical Research,1996,101(B5):11401-11425.
[49] 袁晓雨,姚长利,郑元满,等.强磁性体Δ T 异常计算的误差分析研究[J].地球物理学报,2015,58(12):4756-4765.
[50] Backus G E.Non-uniqueness of the external geomagnetic field determined by surface intensity measurements[J].Journal of Geophysical Research,1970,75(31):6339-6341.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com