Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (3): 459-467    DOI: 10.11720/wtyht.2017.3.10
  地质调查资源勘查方法应用 本期目录 | 过刊浏览 | 高级检索 |
拉脊山东段地区Au、Cu地球化学组合异常识别与提取
姜晓佳1, 陈鑫1, 郑有业1,2,3, 高顺宝2, 欧阳嵩1, 张永超2, 郑磊1, 黄建2
1.中国地质大学(武汉) 资源学院,湖北 武汉 430074;
2.中国地质大学(武汉) 地质调查研究院,湖北 武汉 430074;
3.中国地质大学(北京) 地质过程与矿产资源国家重点实验室,北京 100083
The recognition and extraction of Au, Cu geochemical composite anomalies:A case study of the east of Laji Mountains
JIANG Xiao-Jia1, CHEN Xin1, ZHENG You-Ye1,2, 3, GAO Shun-Bao2, OUYANG-Song1, ZHANG Yong-Chao2, ZHENG Lei1, HUANG Jian2
1.The Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China;
2.Institute of Geological Survey, China University of Geosciences, Wuhan 430074,China;
3.State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
全文: PDF(3554 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为削弱拉脊山东段地区化探数据(典型的成分数据)存在的闭合效应,进一步分析该区地球化学元素空间组合分布规律,使用等距对数比变换(ilr)“打开”水系沉积物地球化学数据;采用稳健主成分分析(RPCA)构建组合模型,用于识别组合地球化学异常;通过S-A分形滤波技术强化弱异常并分离异常与背景,圈定地球化学致矿异常,进一步指导矿产勘查。研究结果表明:得到两组与矿化相关的元素组合,第一组为Au-As,与研究区的构造蚀变岩型金(砷)矿(金源东沟等)相关;第二组为Cu-Ni,与区域内铜镍硫化物矿床(拉水峡等)相关。S-A滤波技术可以进一步分解组合异常,强化弱小异常,同时能够缩小强背景下的异常面积,结合研究区地质概况和分解后的异常图可以进一步指导该地区构造蚀变岩型Au(As)矿和铜镍硫化物矿床的找矿勘查工作。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:In order to weaken the closure effect of the geochemical data which serve as typical component data, the authors analyzed the spatial distribution of geochemical elements in the Laji Mountains. The authors used the isometric log-ratio(ilr) transformation to "open" the geochemical data of the water sediments, built the combined model using robust principal component analysis (RPCA) to identify the combined geochemical anomalies and employed fractal filtering technique to strengthen weak anomalies and separate anomaly from background. In this way, the authors delineated geochemical anomaly so as to guide mineral exploration better. The result obtained by using RPCA displays two different compositional assemblages: (I) Au-As, probably representing tectonic-altered rock type gold deposit like the east ditch of Jinyuan, and (II) Cu-Ni, likely representing copper-nickel sulfide mineralization such as Lashuixia. The results from S-A filter technique can decompose anomalies further, strengthen weak anomaly and reduce the abnormal area in the strong background and, in combination with the geological survey of the study area and the anomaly map, can better search for tectonic-altered rock type Au-As deposits and Cu-Ni sulfide mineralization.
收稿日期: 2016-07-25      出版日期: 2017-06-20
:  P632  
基金资助:中国地质调查局 “青海省甘德县青珍矿产远景调查”(12120113031400)
通讯作者: 郑有业(1962-),男, 长江学者特聘教授,博士生导师, 主要从事成矿规律及矿产勘查评价工作。Email:zhyouye@163.com
作者简介: 姜晓佳(1992-),男,硕士研究生,矿产普查与勘探专业,主要从事成矿规律与成矿预测研究工作。Email:jiangxiaojia1992@163.com
引用本文:   
姜晓佳, 陈鑫, 郑有业, 高顺宝, 欧阳嵩, 张永超, 郑磊, 黄建. 拉脊山东段地区Au、Cu地球化学组合异常识别与提取[J]. 物探与化探, 2017, 41(3): 459-467.
JIANG Xiao-Jia, CHEN Xin, ZHENG You-Ye, GAO Shun-Bao, OUYANG-Song, ZHANG Yong-Chao, ZHENG Lei, HUANG Jian. The recognition and extraction of Au, Cu geochemical composite anomalies:A case study of the east of Laji Mountains. Geophysical and Geochemical Exploration, 2017, 41(3): 459-467.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.3.10      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I3/459
[1] 王学求. 矿产勘查地球化学:过去的成就与未来的挑战[J]. 地学前缘,2003, 10(1): 239-248.
[2] 王瑞廷,毛景文,任小华,等. 区域地球化学异常评价的现状及其存在的问题[J]. 中国地质,2005, 32(1): 168-175.
[3] 谢学锦,任天祥,奚小环,等. 中国区域化探全国扫面计划卅年[J]. 地球学报,2009, 30(6): 700-716.
[4] 王学求,谢学锦,张本仁,等. 地壳全元素探测技术与实验示范[J].地球学报, 2011,32(s1):65-83.
[5] Chayes F, Trochimczyk J. An effect of closure on the structure of principal components[J]. Journal of the International Association for Mathematical Geology,1978, 10(4): 323-333.
[6] Aitchison J.The statistical analysis of compositional data[J].Journal of the Royal Statistical Society, 1986, 44(2):139-177.
[7] Gregory F P.The statistical analysis of compositional data[J].Technometrics, 1988, 30(1):120-121.
[8] 周蒂. 地质成分数据统计分析——困难和探索[J]. 地球科学,1998,23(2): 147-152.
[9] Carranza E J M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration,2011, 110(2): 167-185.
[10] Zuo R G. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China[J]. Journal of Geochemical Exploration,2014, 139: 170-176.
[11] Filzmoser P, Hron K, Reimann C. Principal component analysis for compositional data with outliers[J]. Environmetrics,2009, 20(6): 621-632.
[12] Nazarpour A, Omran N R, Paydar G R, et al. Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran[J]. Chemie der Erde:Geochemistry,2015, 75(1): 117-132.
[13] Wang H C, Cheng Q M, Zuo R G. Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China)[J]. Journal of Geochemical Exploration,2015, 148: 259-269.
[14] Zuo R G, Wang J, Chen G X,et al. Identification of weak anomalies: A multifractal perspective[J]. Journal of Geochemical Exploration, 2015,148: 12-24.
[15] Cheng Q M. Non-linear theory and power-law models for?Information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008,40(5): 503-532.
[16] Cheng Q M, Agterberg F P,Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2): 109-130.
[17] 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991:1-752.
[18] 青海省地质矿产局. 青海省岩石地层[M]. 武汉: 中国地质大学出版社, 1997:340.
[19] 汤中立,闫海卿,焦建刚,等. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质,2006, 25(1): 1-9.
[20] 张照伟,李文渊,高永宝,等. 青海化隆基性-超基性岩带铜镍矿成矿条件与找矿潜力[J]. 西北地质,2012,45(1): 140-148.
[21] 杨巍然,邓清禄,吴秀玲. 拉脊山造山带断裂作用特征及与火山岩、蛇绿岩套的关系[J]. 地质科技情报,2000, 19(2): 5-11.
[22] 殷鸿福,张克信. 中央造山带的演化及其特点[J]. 地球科学:中国地质大学学报,1998,23(5): 438-442.
[23] Sun X, Zheng Y Y, Wang C M, et al. Identifying geochemical anomalies associated with Sb-Au-Pb-Zn-Ag mineralization in North Himalaya, southern Tibet[J]. Ore Geology Reviews,2016, 73: 1-12.
[24] Zhang Z, Zuo R, Cheng Q. Geological features and formation processes of the makeng Fe deposit, China[J]. Resource Geology,2015, 65(3): 266-284.
[25] 周洪伟. 正态性检验的几种常用的方法[J]. 南京晓庄学院学报,2012(3): 13-18.
[26] 何凤萍,王正海,方臣,等. 庞西垌地区Ag-Au矿化信息识别与提取[J]. 地质科技情报,2014,33(2): 110-115.
[27] Zhao J, Wang W L, Dong L H, et al. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China[J]. Journal of Geochemical Exploration,2012, 122: 81-89.
[28] Egozcue J J, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric logratio transformations for compositional data analysis[J]. Mathematical Geology,2003, 35(3): 279-300.
[29] Filzmoser P, Hron K. Correlation analysis for compositional data[J]. Mathematical Geosciences,2009, 41(8): 905-919.
[30] Aitchison L. The statistical analysis of compositional data[J]. Journal of the Royal Statistical Society: Series B,1982, 44(24): 139-177.
[31] Fritsch V, Varoquaux G, Thyreau B, et al. Detecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators.[J]. Medical Image Analysis,2012, 16(7): 1359-1370.
[32] 张蓓,王顺芳. 基于MCD稳健估计的PCA人脸识别算法[J]. 计算机工程与设计,2015,36(3): 778-782.
[33] Cheng Q M, Xu Y G, Grunsky E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research,2000, 9(1): 43-52.
[34] Cheng Q M. Spatial and scaling modelling for geochemical anomaly separation[J]. Journal of Geochemical Exploration,1999, 65(3): 175-194.
[35] Cheng Q M. A new model for quantifying anisotropic scale Invariance and for decomposition of mixing patterns[J]. Mathematical Geology,2004, 36(3): 345-360.
[36] 成秋明,张生元,左仁广,等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘,2009,16(2): 185-198.
[37] Zuo R G, Xia Q L, Wang H C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry,2013, 28: 202-211.
[38] Afzal P, Alghalandis Y F, Khakzad A, et al. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling[J]. Journal of Geochemical Exploration,2011, 108(3): 220-232.
[39] 朱有光, 蒋敬业, 李泽九, 等. 试论我国重要景观区中景观*表生因素对金*铜区域地球化学异常标志的影响[J]. 物探与化探, 2001,25(6):418-424.
[40] 赵娟, 孙泽坤, 李明喜. 青海景观区特征和地球化学勘查方法技术[J]. 物探与化探, 2004,28(3):239-241.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com