Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (6): 1237-1243    DOI: 10.11720/wtyht.2016.6.29
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
TI介质一种稳定的标量波方程及其逆时偏移
杨国权1, 李河昭1, 徐文才1, 王红振1, 刘泽民2
1. 中国石油大学(华东) 地震波传播与成像实验室, 山东 青岛 266580;
2. 中国石油新疆油田公司采气一厂, 新疆 克拉玛依 834000
A stable scalar wave equation for reverse-time migration in TI media
YANG Guo-Quan1, LI He-Zhao1, XU Wen-Cai1, WANG Hong-Zhen1, LIU Ze-Min2
1. SWPI, China University of Petroleum(East China), Qingdao 266580, China;
2. No.1 Gas Recovery Factory, Xinjiang Oilfield Company, Karamay 834000, China
全文: PDF(4485 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地下地层存在普遍的各向异性,随着集群计算性能和野外地震采集的迅猛发展,使得逆时偏移技术在各向异性介质中的应用成为可能。基于声学近似的标量波逆时偏移技术既能克服弹性波逆时偏移建模复杂、计算量巨大的限制,又能对地下构造准确成像,是工业界的热点问题之一。笔者从TI介质的弹性波理论出发,基于声学近似的思想,提出了一套稳健的TI介质标量波方程及逆时偏移策略。通过对模型的标量波数值模拟表明,文中提出的标量波方程能较好地压制横波干扰;Hess VTI模型的逆时偏移结果验证了将拟声波方程应用到逆时偏移的可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Anisotropy is widespread in subsurface.The rapid development of PC-Cluster and field seismic acquisition makes it possible to take anisotropic medium into accounted.Scalar wave equation and its RTM,based on acoustic approximation,has becoame a hot issue of the industry.It can overcome the complexity of elastic modeling and computational limitations.In this paper,the authors derived the scalar acoustic equation on the basis of elastic wave theory in anisotropic medium.According to this equation,the authors put forward a reverse time migration strategy.The numerical simulation shows that the scalar wave equations in this paper can better suppress shear wave interference.RTM result of Hess model demonstrates the feasibility when it is used to RTM.

收稿日期: 2015-12-25      出版日期: 2016-12-10
:  P631.4  
基金资助:

国家科技重大专项(2011ZX05006-002)、国家高技术研究发展计划(“863”计划)(2011AA060301)

作者简介: 杨国权(1962-),男,副教授,主要从事地震资料处理与解释的研究工作
引用本文:   
杨国权, 李河昭, 徐文才, 王红振, 刘泽民. TI介质一种稳定的标量波方程及其逆时偏移[J]. 物探与化探, 2016, 40(6): 1237-1243.
YANG Guo-Quan, LI He-Zhao, XU Wen-Cai, WANG Hong-Zhen, LIU Ze-Min. A stable scalar wave equation for reverse-time migration in TI media. Geophysical and Geochemical Exploration, 2016, 40(6): 1237-1243.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.6.29      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I6/1237

[1] Kim Y,Cho Y,Jang U,et al.Acceleration of stable TTI P-wave reverse-time migration with GPUs[J].Computers&Geosciences,2013,52:204-217.
[2] 吴国忱.各向异性介质地震波传播与成像[M].北京:石油大学出版社,2006.
[3] Baysal E,Kosloff D D,Sherwood J W C.Reverse time migration[J].Geophysics,1983,48(11):1514-1524.
[4] Dellinger J A.Anisotropic seismic wave propagation[D].Palo Alto:Stanford University,1991.
[5] Farmer P A,Jones I F,Zhou H,et al.Application of reverse time migration to complex imaging problems[J].First Break,2006,24(9):1-6.
[6] Sun R,McMechan G A.Line sources for seismic modeling by finite differences in inhomogeneous media[J].Geoexploration,1987,24(3):183-196.
[7] Chang W F,McMechan G A.3-D elastic prestack,reverse-time depth migration[J].Geophysics,1994,59(4):597-609.
[8] Yan J,Sava P.Elastic wavefield imaging with scalar and vector potentials[C]//77th Annual International Meeting,SEG,Expanded Abstracts,2007.
[9] Yan J,Sava P.Elastic wave-mode separation for VTI media[J].Geophysics,2009,74:WB19-WB32.
[10] Alkhalifah T.Acoustic approximations for processing in transversely isotropic media[J].Geophysics,1998,63(2):623-631.
[11] Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966.
[12] Alkhalifah T.An acoustic wave equation for anisotropic media[J].Geophysics,2000,65(4):1239-1250.
[13] Zhou H,Zhang G,Bloor R.An anisotropic acoustic wave equation for VTI media[C]//68th EAGE Conference and Exhibition incorporating SPE EUROPEC,2006.
[14] Du X,Fletcher R P,Fowler P J.A new pseudo-acoustic wave equation for VTI media[C]//70th EAGE Conference and Exhibition incorporating SPE EUROPEC,2008.
[15] Grechka V,Zhang L,Rector Ⅲ J W.Shear waves in acoustic anisotropic media[J].Geophysics,2004,69(2):576-582.
[16] Zhang Y,Zhang G.One-step extrapolation method for reverse time migration[J].Geophysics,2009,74(4):A29-A33.
[17] Guan H,Dussaud E,Denel B,et al.Techniques for an efficient implementation of RTM in TTI media[C]//81st Annual International Meeting,SEG,Expanded Abstracts,2011.
[18] Pestana R C,Ursin B,Stoffa P L.Separate P-and SV-wave equations for VTI media[C]//12nd International Congress of the Brazilian Geophysical Society,2011.
[19] Zhan G,Pestana R C,Stoffa P L.An acoustic wave equation for pure P wave in 2D TTI media[C]//12nd International Congress of the Brazilian Geophysical Society,2011.
[20] 张岩,吴国忱.TTI介质叠前逆时偏移成像研究综述[J].地球物理学进展,2013,28(1):409-420.
[21] Claerbout J F.Toward a unified theory of reflector mapping[J].Geophysics,1971,36(3):467-481.
[22] Kosloff D D,Baysal E.Migration with the full acoustic wave equation[J].Geophysics,1983,48(6):677-687.
[23] Schleicher J,Costa J C,Novais A.A comparison of imaging conditions for wave-equation shot-profile migration[J].Geophysics,2008,73(6):S219-S227.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com