Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (5): 974-979    DOI: 10.11720/wtyht.2016.5.21
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
邻近算法在一维大地电磁反演中的应用
黄卫航1,2, 金维浚1, 张文辉1,2
1. 中国科学院 地质与地球物理研究所, 北京 100029;
2. 中国科学院大学, 北京 100049
Neighbourhood algorithm and its application to 1D magnetotelluric data inversion
HUANG Wei-Hang1,2, JIN Wei-Jun1, ZHANG Wen-Hui1,2
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(3760 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

总结了大地电磁法(MT)中常用的各种反演算法,并指出其局限性。对邻近算法(NA)加以概述,并将其引入MT反演中。对一维MT合成数据进行反演分析,得到的最大似然模型十分接近理论模型。虽然NA与遗传算法(GA)抗陷入局部极小值的能力大体相等,但NA算法生成的采样点分布密度与误差函数大体一致,因此NA更有利于应用基于积分的参数估值方法。本研究表明,NA收敛速度比GA更快。这说明在一维MT反演中,NA算法比GA算法更具优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Magnetotelluric method (MT) is applied so widely that improving the method of inversion and the interpretation of MT data become very important. This paper summarizes different inversion algorithms and points out their limitations. Then an overview is given on neighborhood algorithm (NA) and its application to the MT inversion. The maximum likelihood model from NA is very close to the theoretical model. Although NA and genetic algorithm (GA) have the same capability for resisting the local minimum value, NA algorithm shows better similarity between the density distribution of sampling points and the error function, so NA is more conducive to inversion application based on the integral parameter appraisal method. In this study, the authors found that NA converges much faster than GA, whereas NA algorithm is more advantageous than GA algorithm in 1D MT inversion.

收稿日期: 2015-11-11      出版日期: 2016-10-10
:  P631  
基金资助:

国家自然科学基金面上项目(41372324);中国地质调查局项目“白龙江流域主要活动断裂调查与地质灾害效应研究”

作者简介: 黄卫航(1992-),男,硕士研究生在读,研究方向为电法勘探.
引用本文:   
黄卫航, 金维浚, 张文辉. 邻近算法在一维大地电磁反演中的应用[J]. 物探与化探, 2016, 40(5): 974-979.
HUANG Wei-Hang, JIN Wei-Jun, ZHANG Wen-Hui. Neighbourhood algorithm and its application to 1D magnetotelluric data inversion. Geophysical and Geochemical Exploration, 2016, 40(5): 974-979.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.5.21      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I5/974

[1] Bedrosian P A. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes[J]. Surveys in Geophysics, 2007, 28(2-3):121-167.
[2] Bostick F X. A simple almost exact method of MT analysis[C]//Workshop on electrical methods in geothermal exploration. 1977:175-177.
[3] 王家映, LevyS O D. 大地电磁测深的拟地震解释法[J]. 石油地球物理勘探, 1985, 20(1):66-79.
[4] Constable S C, Parker R L, Constable C G. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.
[5] Mackie R L, Madden T R. Conjugate direction relaxation solutions for 3-D magnetotelluric modeling[J]. Geophysics, 1993, 58(7):1052-1057.
[6] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.
[7] 陈孝雄, 王友胜. 利用初始模型提高 MT 反演分辨率[J]. 江汉石油科技, 2009, 16(4):19-22.
[8] Hammersley J M, Handscomb D C. The General Nature of Monte Carlo Methods[M]. Springer Netherlands, 1964.
[9] Rothman D H. Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics, 1985, 50(12):2784-2796.
[10] Spichak V, Popova I. Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters[J]. Geophysical Journal International, 2000, 142(1):15-26.
[11] Stoffa P L, Sen M K. Nonlinear multiparameter optimization using genetic algorithms:Inversion of plane-wave seismograms[J]. Geophysics, 1991, 56(11):1794-1810.
[12] Shaw R, Srivastava S. Particle swarm optimization:A new tool to invert geophysical data[J]. Geophysics, 2007, 72(2):F75-F83.
[13] Sambridge M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space[J]. Geophysical Journal International, 1999, 138(2):479-494.
[14] Voronoï G. Nouvelles applications des paramètres continus ã la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs[J].Journal für die reine und angewandte Mathematik, 1908, 134:198-287.
[15] Jones A G, Hutton R. A multi-station magnetotelluric study in southern Scotland-Ⅱ. Monte-Carlo inversion of the data and its geophysical and tectonic implications[J]. Geophysical Journal International, 1979, 56(2):351-368.
[16] Sambridge M. Geophysical inversion with a neighbourhood algorithm-Ⅱ. Appraising the ensemble[J]. Geophysical Journal International, 1999, 138(3):727-746.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com