Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (3): 509-513    DOI: 10.11720/wtyht.2016.3.12
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
基于三维自然电位电源密度成像方法的包气带介质结构探测
杨磊1,2, 周启友2, 雷明1,2
1. 浙江省水文地质工程地质大队, 浙江 宁波 315012;
2. 南京大学 地球科学与工程学院, 江苏 南京 210093
The detection of medium structure based on three-dimensional current source tomography method in vadose zone
YANG Lei1,2, ZHOU Qi-You2, LEI Ming1,2
1. Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo 315012, China;
2. Department of Hydrosciences, Nanjing University, Nanjing 210093, China
全文: PDF(2142 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

借助三维自然电位电源密度反演成像方法,分析南京中山植物园试验场地的野外电位观测资料,研究包气带的介质结构信息。研究结果证明,电源密度反演成像结果与探地雷达获得的地下介质结构特征具有很好的吻合性,这表明三维自然电位电源密度成像可以应用于探测包气带介质结构。这为研究地下空间结构提供了一种新的地球物理方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Based on three-dimensional current source inversion tomography, the authors applied the self-potential data obtained in the research site of Zhongshan Botanical Garden in Nanjing to study the medium structure in the vadose zone. The medium structure revealed by current source tomography accorded with the results from ground penetrating radar. This indicates that three-dimensional current source tomography can be used to detect the medium structure in the vadose zone, thus providing a new geophysical method for investigating ground medium structure.

收稿日期: 2015-04-21      出版日期: 2016-06-10
:  P631  
基金资助:

国家自然科学基金项目(40771038)

作者简介: 杨磊(1985-),男,博士,主要从事地球物理方法研究。
引用本文:   
杨磊, 周启友, 雷明. 基于三维自然电位电源密度成像方法的包气带介质结构探测[J]. 物探与化探, 2016, 40(3): 509-513.
YANG Lei, ZHOU Qi-You, LEI Ming. The detection of medium structure based on three-dimensional current source tomography method in vadose zone. Geophysical and Geochemical Exploration, 2016, 40(3): 509-513.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.3.12      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I3/509

[1] Rao M B R. Self-potential anomalies due to subsurface water flow at Garimenapenta[J]. Madras State, 1953:400-403.
[2] Sill W R. Self-potential modeling from primary flows[J]. Geophysics, 1983, 48: 76-86.
[3] Doussan C, Jouniaux L, Thony J L. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils[J]. J Hydrol, 2002, 267: 173-185.
[4] Suski B, Revil A, Titov K, et al. Monitoring of an infiltration experiment using the self-potential method[J]. Water Resour Res, 42:W08418. doi: 10.1029/2005WR004840.
[5] Revil A, Cary L, Fan Q, et al. Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel[J]. Geophys Res Lett, 2005, 32:L07401, doi: 10.1029/2004GL022124.
[6] Jardani A, Dupont J P, Revil A. Self-potential signals associated with preferential groundwater flow pathways in sinkholes[J]. Journal of Geophysical Research-Solid Earth, 2006, 111:B09204, doi: 10.1029/2005JB004231.
[7] Jardani A, A. Revil, A. Bolève, et al. Three-dimensional inversion of self-potential data used to constrain the pattern of groundwater flow in geothermal fields[J]. J. Geophys. Res., 2008, 113, B09204, doi:10.1029/2007JB005302.
[8] Revil A, Pezard P A, Glover P. Streaming potential in porous media 1. Theory of the zeta potential[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B9): 20021-20031.
[9] Revil A, Schwaeger H, Cathles L M, et al. Streaming potential in porous media 2. Theory and application to geothermal systems[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B9): 20033-20048.
[10] Darnet M, Marquis G. Modelling streaming potential (SP) signals induced by water movement in the vadose zone[J]. J Hydrol, 2004, 285: 114-124.
[11] Maineult A, Bemabe Y, Ackerer P. Detection of advected, reacting redox fronts from self-potential measurements[J]. J Contam Hydrol, 2006, 86: 32-52.
[12] Naudet V, Revil A, Bottero J Y, et al. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater[J]. Geophys Res Lett, 2003, 30(21):2091, doi: 10.1029/2003GL018096, 2003.
[13] Minsley B J, Sogade J, Morgan F D. Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina[J]. Water Resour Res, 2007, 43:W04429. doi: 10.1029/2005WR003996.
[14] Castermant J, Mendonça C A, Revil A, et al. Redox potential distribution inferred from self-potential measurements associated with the corrosion of a burden metallic body[J]. Geophys Prospect, 2008, 56: 269-282.
[15] Overbeek, J. Th. G. Electrochemistry of the double layer[M]. Colloid Science, vol. 1, Irreversible Systems, Elsevier, New York, 1952:115-193.
[16] Patella D. Self-potential global tomography including topographic effects[J]. Geophys Prospect, 1997, 45: 843-863.
[17] Patella D. Introduction to ground surface self-potential tomography[J]. Geophys Prospect, 1997, 45: 653-681.
[18] Spinelli, L. Analyse Spatiale de l'Activité Electrique Cérébrale: Nouveaux Développements[D]. Ph.D. thesis (in French), 136 pp., Université Joseph Fourier-Grenoble I, Grenoble, France, 1999.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com