Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (S1): 58-62    DOI: 10.11720/wtyht.2015.S1.13
  国家高技术研究发展计划项目(2011AA060501)专题 本期目录 | 过刊浏览 | 高级检索 |
原子重力仪的共模噪声抑制研究
许翱鹏1, 王兆英1, 王启宇1, 付志杰1, 林强1,2
1. 浙江大学光学研究所, 浙江 杭州 310027;
2. 浙江工业大学理学院, 浙江 杭州 310023
The restraint of the common-mode noise in the cold atom gravimeter
XU Ao-Peng1, WANG Zhao-Ying1, WANG Qi-Yu1, FU Zhi-Jie1, LIN Qiang1,2
1. Institute of Optics, Zhejiang University, Hangzhou 310027, China;
2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China
全文: PDF(6584 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

重力场的信息可以反映地球内部的地质构造.利用激光诱导受激拉曼跃迁的冷原子干涉仪是测量重力场最灵敏的方法之一,我们已经在实验室研制出共用一套拉曼光系统的两台同步工作的原子干涉型重力仪系统.本文对这两台系统的共模噪声的抑制进行了详细的研究,特别对主要的共模噪声源之一的振动噪声的抑制进行了细致的实验研究,并对共模噪声免疫的椭圆拟合算法进行了理论分析.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

The information of the gravity field and gravity gradient reflects the geological information of the Earth's interior. The cold atom interferometer using laser-induced stimulated Raman transitions is one of the most sensitive methods for measuring the gravity and gravity gradient. In order to restrain the noises, one can use two sets of cold atom gravimeters working simultaneously in a system. The common-mode noise in such a system was investigated in detail in this paper. The research on the restraint of the common-mode noise mainly included vibration noise restraint. Moreover, the authors used the ellipse fitting to analyze the common-mode noise and found that the vibration noise can be mostly canceled out in this system.

收稿日期: 2015-12-04      出版日期: 2015-12-31
:  P631  
基金资助:

国家高技术研究发展计划"863计划"项目(2011AA060504);国家自然科学基金项目(11174249,61475139)

作者简介: 许翱鹏(1987-),男,浙江大学博士,现从事冷原子重力仪、原子干涉仪等方面的研究工作.
引用本文:   
许翱鹏, 王兆英, 王启宇, 付志杰, 林强. 原子重力仪的共模噪声抑制研究[J]. 物探与化探, 2015, 39(S1): 58-62.
XU Ao-Peng, WANG Zhao-Ying, WANG Qi-Yu, FU Zhi-Jie, LIN Qiang. The restraint of the common-mode noise in the cold atom gravimeter. Geophysical and Geochemical Exploration, 2015, 39(S1): 58-62.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.S1.13      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/IS1/58

[1] Hnsch T W, Schawlow A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1): 68-69.

[2] Chu S, Prentiss M G, Cable A E, et al. Laser Spectroscopy VIII. 1987.

[3] Hu Z K,Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4).

[4] Snadden M J,McGuirk J M, Bouyer P, et al. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer[J]. Physical Review Letters, 1998, 81(5): 971.

[5] Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2): 181.

[6] Peters A, Chung K Y,Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25.

[7] Wu B, Wang Z, Cheng B, et al. The investigation of a μGal-level cold atom gravimeter for field applications[J]. Metrologia, 2014, 51(5): 452.

[8] Steck D A. Rubidium 87 D line data. 2001.

[9] Wang X L,Cheng B, Wu B, et al. A simplified cold atom source for 3-D MOT loading[J]. Chin Phys Lett, 2011, 28: 053701.

[10] Kasevich M, Weiss D S, Riis E, et al. Atomic velocity selection using stimulated Raman transitions[J]. Physical review letters, 1991, 66(18): 2297.

[11] Ramsey N F. A molecular beam resonance method with separated oscillating fields[J]. Physical Review, 1950, 78(6): 695.

[12] 吴彬. 高精度冷原子重力仪噪声与系统误差研究[D].杭州:浙江大学, 2014.

[13] Wang X L, Tao T J,Cheng B, et al. A digital phase lock loop for an external cavity diode laser[J]. Chinese Physics Letters, 2011, 28(8): 084214.

[14] Wu B, Wang Z Y,Cheng B, et al. Accurate measurement of the quadratic Zeeman coefficient of 87Rb clock transition based on the Ramsey atom interferometer[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 47(1): 015001.

[15] Riley W J. The basics of frequency stability analysis[J]. Hamilton Technical Services, 2004.

[16] Louchet-Chauvet A, Farah T, Bodart Q, et al. The influence of transverse motion within an atomic gravimeter[J]. New Journal of Physics, 2011, 13(6): 065025.

[17] Schmidt M, Senger A, Hauth M, et al. A mobile high-precision absolute gravimeter based on atom interferometry[J]. Gyroscopy and Navigation, 2011, 2(3): 170-177.

[18] Zhou M K, Hu Z K, Duan X D, et al. Performance of a cold-atom gravimeter with an active vibration isolator[J]. Physical Review A, 2012, 86(4): 043630.

[19] Tang B, Zhou L, Xiong Z, et al. A programmable broadband low frequency active vibration isolation system for atom interferometry[J]. Review of Scientific Instruments, 2014, 85(9): 093109.

[20] Cheinet P, Canuel B, Santos F P D, et al. Measurement of the sensitivity function in a time-domain atomic interferometer[J]. Instrumentation and Measurement, IEEE Transactions on, 2008, 57(6): 1141-1148.

[21] Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1999, 21(5): 476-480.

[22] Foster G T, Fixler J B, McGuirk J M, et al. Method of phase extraction between coupled atom interferometers using ellipse-specific fitting[J]. Optics letters, 2002, 27(11): 951-953.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com