Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (S1): 47-52    DOI: 10.11720/wtyht.2015.S1.11
  国家高技术研究发展计划项目(2011AA060501)专题 本期目录 | 过刊浏览 | 高级检索 |
微伽级冷原子重力仪研究
吴彬1, 王兆英2, 程冰2, 王启宇2, 许翱鹏2, 林强1,2
1. 浙江工业大学理学院光学与光电子研究中心, 浙江 杭州 310023;
2. 浙江大学光学研究所, 浙江 杭州 310027
A study of the μ-Gal-level cold atom gravimeter
WU Bin1, WANG Zhao-Ying2, CHENG Bing2, WANG Qi-Yu2, XU Ao-Peng2, LIN Qiang1,2
1. Center for Optics & Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
2. Institute of Optics, Zhejiang University, Hangzhou 310027, China
全文: PDF(5956 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

在石油及矿产勘探和地质构造研究等领域,重力法是一种常用的重要方法,重力法的应用范围在很大程度上取决于重力测量设备—重力仪,高精度重力仪对重力法的应用和普及起着重要作用.因此提出研究有望用于物探领域的高精度小型化冷原子重力仪.首先,用改进的磁场线圈代替昂贵且笨重的坡莫合金来实现杂散磁场的屏蔽;其次,利用一个紧凑且小尺寸的被动隔振平台来实现地面振动的抑制.在探询时间为120ms且重复率为2.2Hz的情况下,该冷原子重力仪的重力测量灵敏度达到1.0×10-7g/Hz1/2;1000s积分时间,重力测量分辨率为5.7×10-9g.为了验证冷原子重力仪设备的稳定性,不间断测量了128h的潮汐信号.除此之外,发生在2013年9月28号巴基斯坦的一小时地震波信号被我们的高精度冷原子重力仪采集到,该信号与附近的传统地震仪测量到的地震波信号完全吻合.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

In the field of oil prospecting, mineral exploration and geological structure research, the gravity method is a commonly used method. The application range of the gravity method mainly depends on the gravimeter. High-precision gravimeter plays an important role in the application and population of the gravity methods. In this paper, the authors present the investigation of a high-precision transportable cold atom gravimeter, which is expected to be used in the field applications. The improved magnetic coils are used in the gravimeter instead of the expensive mu-metal for magnetic shielding. Besides, a portable platform of relatively small size is applied to the vibration isolation. The total interrogation time is optimized to 120 ms and the repetition rate is 2.2 Hz. A sensitivity of and a resolution of within 1000 s integration time have been reached. The continuous measurement of g over 128 hours is carried out. Moreover, a whole seismic wave of about 1 hour that occurred in Pakistan on September 28, 2013 was recorded by the atomic gravimeter. The result coincides well with that recorded by a traditional seismic detector.

收稿日期: 2015-12-04      出版日期: 2015-12-31
:  P631  
基金资助:

国家高技术研究发展计划"863计划"项目(2011AA060504);国家自然科学基金项目(11174249,61475139)

作者简介: 吴彬(1985-),男,讲师,浙江大学博士毕业,现从事冷原子重力仪、原子干涉仪等方面的研究工作.
引用本文:   
吴彬, 王兆英, 程冰, 王启宇, 许翱鹏, 林强. 微伽级冷原子重力仪研究[J]. 物探与化探, 2015, 39(S1): 47-52.
WU Bin, WANG Zhao-Ying, CHENG Bing, WANG Qi-Yu, XU Ao-Peng, LIN Qiang. A study of the μ-Gal-level cold atom gravimeter. Geophysical and Geochemical Exploration, 2015, 39(S1): 47-52.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.S1.11      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/IS1/47

[1] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, et al. Determination of the Newtonian Gravitational Constant Using Atom Interferometry[J]. Phys. Rev. Lett., 2008, 100(5): 050801.

[2] J.B. Fixler, G.T. Foster, J.M. McGuirk, et al. Atom interferometer measurement of the Newtonian constant of gravity[J]. Science, 2007, 315(5808): 74-77.

[3] P. Cladé, E. de Mirandes, M. Cadoret, et al. Determination of the Fine Structure Constant Based on Bloch Oscillations of Ultracold Atoms in a Vertical Optical Lattice[J]. Phys. Rev. Lett., 2006, 96(3): 033001.

[4] S. Dimopoulos, P.W. Graham, J.M. Hogan, et al. Testing General Relativity with Atom Interferometry[J]. Phys. Rev. Lett, 2007, 98(11): 111102.

[5] S. Fray, C.A. Diez, T. Hnsch, et al. Atomic Interferometer with Amplitude Gratings of Light and Its Applications to Atom Based Tests of the Equivalence Principle[J]. Phys. Rev. Lett., 2004, 93(24): 240404.

[6] M.A. Hohensee, S. Chu, A. Peters, et al. Equivalence Principle and Gravitational Redshift[J]. Phys. Rev. Lett, 2011, 106(15): 151102.

[7] S. Dimopoulos, P.W. Graham, J.M. Hogan, et al. Gravitational wave detection with atom interferometry[J]. Phys. Lett. B, 2009, 678(1): 37-40.

[8] M. Kasevich and S. Chu. Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferometer[J]. Appl. Phys. B, 1992, 54(5): 321-332.

[9] H. Müller, S.W. Chiow, S. Herrmann, et al. Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity[J]. Phys. Rev. Lett., 2008, 100(3): 031101.

[10] J. Le Gout, T.E. Mehlstubler, J. Kim, et al. Limits to the sensitivity of a low noise compact atomic gravimeter[J]. Appl. Phys. B, 2008, 92(2): 133-144.

[11] T.L. Gustavson, P. Bouyer, and M.A. Kasevich. Precision rotation measurements with an atom interferometer gyroscope[J]. Phys. Rev. Lett, 1997, 78(11): 2046-2049.

[12] M.J. Snadden, J.M. McGuirk, P. Bouyer, et al. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer[J]. Phys. Rev. Lett, 1998, 81(5): 971-974.

[13] J.M. McGuirk, G.T. Foster, J.B. Fixler, et al. Sensitive absolute-gravity gradiometry using atom interferometry[J]. Phys. Rev. A, 2002, 65(3): 033608.

[14] N. Yu, J.M. Kohel, J.R. Kellogg, et al. Development of an atom-interferometer gravity gradiometer for gravity measurement from space[J]. Appl. Phys. B, 2006, 84(4): 647-652.

[15] F. Sorrentino, K. Bongs, P. Bouyer, et al. A Compact Atom Interferometer for Future Space Missions[J]. Microgravity Sci. Technol., 2010, 22(4): 551-561.

[16] Q. Bodart, S. Merlet, N. Malossi, et al. A cold atom pyramidal gravimeter with a single laser beam[J]. Appl. Phys. Lett., 2010, 96(13): 134101.

[17] M. Schmidt, M. Prevedelli, A. Giorgini, et al. A portable laser system for high-precision atom interferometry experiments[J]. Appl. Phys. B, 2011, 102(1): 11-18.

[18] M. Hauth, C. Freier, V. Schkolnik, et al. First gravity measurements using the mobile atom interferometer GAIN[J]. Appl. Phys. B, 2013, 113(1): 49-55.

[19] Y. Bidel, O. Carraz, R. Charriere, et al. Compact cold atom gravimeter for field applications[J]. Appl. Phys. Lett, 2013, 102(14): 144107.

[20] S. Merlet, Q. Bodart, N. Malossi, et al. Comparison between two mobile absolute gravimeters: optical versus atomic interferometers[J]. Metrologia, 2010, 47(4): 9-11.

[21] M.K. Zhou, Z.K. Hu, X.C. Duan, et al. Performance of a cold-atom gravimeter with an active vibration isolator[J]. Phys. Rev. A, 2012, 86(4): 043630.

[22] M. Schmidt, A. Senger, M. Hauth, et al. A mobile high-precision absolute gravimeter based on atom interferometry[J]. Gyroscopy and Navigation, 2011, 2(3): 170-177.

[23] A. Peters, K.Y. Chung, and S. Chu. High-precision gravity measurement using atom interferometry[J]. Metrologia, 2001, 38: 25-61.

[24] M. Kasevich and S. Chu. Atomic Interferometry Using Stimulated Raman Transitions[J]. Phys. Rev. Lett, 1991, 67(2): 181-184.

[25] X.L. Wang, B. Cheng, B. Wu, et al. A Simplified Cold Atom Source for 3-D MOT Loading[J]. Chin. Phys. Lett, 2011, 28(5): 053701.

[26] X.L. Wang, T.J. Tao, B. Cheng, et al. A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett, 2011, 28(8): 084214.

[27] A. Louchet-Chauvet, T. Farah, Q. Bodart, et al. The influence of transverse motion within an atomic gravimeter[J]. New Journal of Physics, 2011, 13(6): 065025.

[28] C.K. Shum, P.L. Woodworth, O.B. Andersen, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research, 1997, 102(C11): 25,173-194.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com