Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (2): 297-305    DOI: 10.11720/wtyht.2015.2.14
  区域地质调查 本期目录 | 过刊浏览 | 高级检索 |
基于含量排列法的地球化学异常结构剖析——以浙西北地区Cu水系沉积物测量为例
赵博1, 于蕾2, 邱骏挺1, 石成龙1, 张德会1
1. 中国地质大学 地球科学与资源学院, 北京 100083;
2. 中国工程爆破协会, 北京 100142
Internal structural analysis of geochemical anomaly based on the content arrangement method: A case study of copper stream sediment survey in northwestern Zhejiang Province
ZHAO Bo1, YU Lei2, QIU Jun-Ting1, SHI Cheng-Long1, ZHANG De-Hui1
1. College of Earth Science and Resource, China University of Geosciences, Beijing 100083, China;
2. China Society of Engineering Blasting, Beijing 100142, China
全文: PDF(2021 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

以浙西北地区1:20万Cu水系沉积物测量为例,通过含量排列法对由分形求和法所圈定的地球化学异常区进行了内部结构分析,认为无标度区掩盖了异常场的内部结构。借鉴前人提出的含量排列法,将异常区数据从小到大按顺序等间距自然排列,并用三段直线(L1L2L3)进行拟合,L1为一级异常,L2L3被归入二级异常。结果发现,一级弱异常基本不含矿,但仍有个别矿点落入该区;二级异常近似代表了矿致异常,与区域断裂、岩浆活动中心在空间上具有更显著的相关性,从中强调了岩浆源区、构造背景转换和断裂交汇的控矿意义,由此圈定出了一些重点异常作为下一步成矿预测工作的首选靶区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

With 1:200 000 stream sediment survey of copper in northwestern Zhejiang Province as an example, the authors used the content arrangement method to study the internal structural features of Cu geochemical anomalies delineated by the Fractal Summation Method in this area. It is the stability of fractal non-scale section that masks the internal spatial structure of the anomalous field, and the ignored fact therein is that such an internal structure can be manifested by a natural revelation or content arrangement (of copper from small to large content) of the original anomalous sample data itself, rather than an effort to overcome the stability of non-scale sections. Three lines of L1, L2, and L3 are used to fit the hierarchical evolution trends, namely the internal structure, of anomalous data, and therein, L1 specifies the primary anomaly, and L2+L3 specify the advanced anomaly. Studies show that the primary anomaly (L1) may correspond in general to a weak mineralization and essentially barren area, although it does contain some weak mineralization or several hidden ore spots; the secondary one (L2+L3) can be approximately or equally considered as the mineralized anomalous area, between which and the regional tectonomagmatic activity there is a further significant spatial correlation; some new undiscovered copper prospecting target was discovered at last on the basis of the study of the ore-controlling significance of magmatic source, tectonic transformation, and convergence of faults in this area.

收稿日期: 2014-01-18      出版日期: 2015-04-10
:  P632  
基金资助:

国土资源部公益性行业科研专项资助(201411024);国家自然科学基金资助(41373048)

通讯作者: 张德会(1955-),男,教授,博士生导师,现从事成矿作用地球化学、应用地球化学及成矿作用动力学的教学和研究工作。E-mail:zhdehui@cugb.edu.cn
作者简介: 赵博(1985-),男,博士,主要从事矿床地球化学、区域地球化学等方面的研究工作。E-mail: xqqelove@163.com
引用本文:   
赵博, 于蕾, 邱骏挺, 石成龙, 张德会. 基于含量排列法的地球化学异常结构剖析——以浙西北地区Cu水系沉积物测量为例[J]. 物探与化探, 2015, 39(2): 297-305.
ZHAO Bo, YU Lei, QIU Jun-Ting, SHI Cheng-Long, ZHANG De-Hui. Internal structural analysis of geochemical anomaly based on the content arrangement method: A case study of copper stream sediment survey in northwestern Zhejiang Province. Geophysical and Geochemical Exploration, 2015, 39(2): 297-305.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.2.14      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I2/297

[1] Zuo R,Carranza E J M,Cheng Q.Fractal/multifractal modelling of geochemical exploration data[J].Journal of Geochemical Exploration, 2012, 122: 1-3.

[2] Allegre C J,Lewin E.Scaling laws and geochemical distributions[J].Earth and Planetary Science Letters, 1995,132(1-4):1-13.

[3] Cheng Q M.Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources[J].Earth Science/Diqiu Kexue, 2011, 36(2).

[4] 赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1994:1-200.

[5] 赵博,张德会,于蕾, 等.从克拉克值到元素的地球化学性质或行为再到成矿作用[J].矿物岩石地球化学通报,2014, 33(2):252-261.

[6] Arias M,Gumiel P,Martín-Izard A.Multifractal analysis of geochemical anomalies: A tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain)[J].Journal of Geochemical Exploration, 2012, 122: 101-112.

[7] Shen W.Study of fractal methods and its application in geology//8th Annual Conference of the International Association for Mathematical Geology: 15~20 September 2002, Berlin, Germany. Alfred-Wegener-Stiftung, 2002, 3: 387.

[8] Shen W.Fractal invariable distribution and its application in large-sized and super large-sized mineral deposits[J].Geoscience Frontiers, 2011, 2(1): 87-91.

[9] Cheng Q M.Quantifying the generalized self-similarity of spatial patterns for mineral resource assessment[J].Earth Science, 2004, 29(6): 733-743.

[10] Turcotte D L.Fractals and chaos in geology and geophysics(second edition)[M].New York:Cambridge University Press,1997:2-127.

[11] 疏志明,彭省临,王雄军,等.多重分形在个旧花岗岩凹陷带地球化学数据分析中的应用[J].物探与化探,2009, 33(3): 327-330.

[12] Cooke D R,Hollings P,Walshe J L.Giant porphyry deposits: characteristics, distribution, and tectonic controls[J].Economic Geology, 2005, 100(5): 801-818.

[13] 李长江,麻土华,朱兴盛,等.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,1999:47-105.

[14] 刁海,张达,赵博.基于分形模型的遥感灰度异常提取研究: 以黑龙江多宝山地区铁染异常提取为例[J].地质与勘探, 2011, 47(5): 903-908.

[15] Agterberg F P.Multifractals and geostatistics[J].Journal of Geochemical Exploration, 2012, 122: 113-122.

[16] Zuo R,Xia Q,Zhang D.A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J].Applied Geochemistry, 2013, 33: 165-172.

[17] Cheng Q, Bonham-Carter G F,Raines G L.GeoDAS: a new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment//Proceedings of The 20th International Geochemical Exploration Symposium. 2001: 6-10.

[18] 赵博.几种统计分析方法在化探数据处理中的应用.北京:中国地质大学, 2010: 9-90.

[19] 韩东煜,龚庆杰,向运川.区域化探数据处理的几种分形方法[J].地质通报,2004, 23(7):714-719.

[20] Ma T H,Li C J,Lu Z M.Estimating the average concentration of minor and trace elements in surficial sediments using fractal methods[J].Journal of Geochemical Exploration,2014

[21] 尹明.我国地质分析测试技术发展现状及趋势[J].岩矿测试, 2009, 28(1): 37-52.

[22] Cox S F,Knackstedt M A,Braun J.Principles of structural control on permeability and fluid flow in hydrothermal systems//Richards J P,Tosdal R M.Structural controls on ore genesis. Soc. Econ. Geol., Inc. Rev. Econ. Geol., 2001, 14:1-24.

[23] Lehmann B,Dietrich A,Wallianos A.From rocks to ore[J].International Journal of Earth Sciences, 2000, 89(2): 284-294.

[24] Polya D A.Efficiency of hydrothermal ore formation and the Panasqueira W-Cu (Ag)-Sn vein deposit[J].1988, 333: 838-841.

[25] 王学求.大型矿床地球化学定量评价模型和方法[J].地学前缘,2000,10(1):257-261.

[26] 杨大欢.黔东南永乐—都江地区水系沉积物中 Ba、Cu、Sb 元素的区域分布及实用意义[J].贵州地质, 1997, 14(4): 368-372.

[27] 杨大欢,郭敏,李瑞, 等.一种求地球化学异常下限的新方法——含量排列法[J].物探化探计算技术, 2009, 31(2): 154-157.

[28] 鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社,1997:2-98.

[29] 肖庆辉,邓晋福,马大栓.花岗岩研究思维与方法[M].北京:地质出版社, 2002: 77-104.

[30] 邱骏挺,余心起,张德会,等.浙西开化桐村花岗斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报,2011,30(9):1360-1368.

[31] 程志中,谢学锦.岩石中元素背景值变化对地球化学成矿预测的影响[J].中国地质,2006,33(2): 411-417.

[32] 朱玉娣,叶锡芳,张德会,等. 浙西桐村斑岩型钼 (铜) 矿床与德兴斑岩铜矿岩浆岩对比研究[J].地球科学进展, 2012, 27(10): 1043-1053.

[33] 朱安庆,张永山,陆祖达,等.浙江省金属非金属矿床成矿系列和成矿区带研究[M].北京:地质出版社, 2009.

[34] 邱骏挺.浙江省西部地区晚侏罗—早白垩世构造背景转换对岩浆成矿作用的影响.北京:中国地质大学, 2013.

[35] 江永宏,李胜荣.湘黔地区下寒武统黑色岩系中镍—钼矿床黄铁矿的成因[J].地质通报, 2010, 29(2/3):427-435.

[36] 於崇文.矿床在混沌边缘分形生长(上) [M].合肥:安徽教育出版社,2003.

[37] 翟裕生,姚书振,蔡克勤.矿床学[M].北京: 地质出版社, 2011: 1-101.

[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com