Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (4): 800-803    DOI: 10.11720/wtyht.2014.4.30
  生态环境地质调查 本期目录 | 过刊浏览 | 高级检索 |
探地雷达在干旱区盐渍化土壤层定量探测中的应用
江红南
新疆大学 干旱生态环境研究所, 新疆 乌鲁木齐 830046
The application of GPR to detecting the saline-soil layer quantitatively in arid area, Northwest China
JIANG Hong-Nan
Institute for Ecology and Environment in Arid Lands, Xinjiang University, Urumqi 830046, China
全文: PDF(775 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 研究了在探地雷达定量探测盐渍化土壤中电磁波传播速度与土壤含盐量或电导率的相关关系,研究表明传播速度和盐渍化土壤的盐分或电导率具有显著的相关性。回归分析结果说明:利用传播速度可较好地定量表达盐渍化土壤的含盐量或电导率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Satellite remote sensing technology has a lower detection depth on salinization soil monitoring, it can not meet the actual demand of salinization soil management. This study explored the salinization soil detection method using 100 MHz low-frequency ground penetrating radar (GPR), determined that 100 MHz GPR electromagnetic wave propagation velocity has a significant correlation relationship with soil salt content or soil conductivity of each soil layer. The result of regression analysis between GPR electromagnetic wave propagation velocity and salt content or conductivity of each soil layer proved that electromagnetic wave propagation velocity of GPR can be used to estimate soil salt content or soil conductivity quantitatively with a good accuracy, furthermore, low-frequency microwave GPR has a deeper detecting depth. This study provided a reference for salinization soil detection using low-frequency GPR quantitatively, and supplied a new technical method for salinization soil detection.
收稿日期: 2013-09-25      出版日期: 2014-08-10
:  P631.3  
  P632  
基金资助:国家自然科学基金项目(41001198);新疆大学绿洲生态教育部重点实验室开放课题(XJDX0201—2010—13)
作者简介: 江红南(1980-),男,讲师,研究方向为摄影测量与遥感。E-mail:jiang_hn@126.com。
引用本文:   
江红南. 探地雷达在干旱区盐渍化土壤层定量探测中的应用[J]. 物探与化探, 2014, 38(4): 800-803.
JIANG Hong-Nan. The application of GPR to detecting the saline-soil layer quantitatively in arid area, Northwest China. Geophysical and Geochemical Exploration, 2014, 38(4): 800-803.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2014.4.30      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I4/800
[1] Ammari T G, Tahhan R, Abubaker S, et al. Soil salinity changes in the Jordan valley potentially threaten sustainable irrigated agriculture[J].Pedosphere, 2013,23(3):376-384.
[2] Anil K M. Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)[J].Mitig Adapt Strateg Glob Change,2013,18:673-689.
[3] Yao R J,Yang J S, Shao H B. Accuracy and uncertainty assessment on geostatistical simulation of soil salinity in a coastal farmland using auxiliary variable[J].Environ Monit Assess,2013,185:5151-5164.
[4] Akhtar A, Shahbaz K,Nisar H,et al.Characterizing soil salinity in irrigated agriculture using a remote sensing approach[J].Physics and Chemistry of the Earth, 2013,55~57:43-52.
[5] 孙永猛,丁建丽,瞿娟,等.应用电磁感应和遥感的新疆绿洲区域尺度盐渍土识别[J].农业工程学报,2012,28(20):180-187.
[6] 薛建,曾昭发,田刚,等.探地雷达在吉林西部地区探测土壤碱化层[J].物探与化探,2005,29(5): 421-424.
[7] Lauro S E,Mattei E,Barone P M. Estimation of subsurface dielectric target depth for GPR planetary exploration: Laboratory measurements and modeling[J].Journal of Applied Geophysics, 2013,93:93-100.
[8] Andrea D M, Elena P, Evert S. Early-time GPR signal attributes to estimate soil dielectric permittivity:A theoretical study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51:1643-1653.
[9] Mohammad R, Mahmoudzadeh A. Off-and on-ground GPR techniques for field-scale soil moisture mapping[J].Geoderma ,2013,200~201:55-66.
[10] Andreas Tzanis. Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters[J].Journal of Applied Geophysics ,2013,89:48-67.
[1] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[2] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[3] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[4] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[5] 张伟, 王永华, 廖国忠. 野外地质样品金元素测试分析箱的研制与应用[J]. 物探与化探, 2020, 44(2): 356-361.
[6] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[7] 莫婉玲, 孙中华, 徐娅, 赵斌. 界面极化电压的外推法测量研究[J]. 物探与化探, 2017, 41(3): 484-488.
[8] 熊俊楠, 孙铭, 彭超, 王泽根, 刘姗, 周坚. 基于探地雷达的城镇燃气PE管道探测方法[J]. 物探与化探, 2015, 39(5): 1079-1084.
[9] 麻昌英, 柳建新, 孙娅, 刘海飞. 高频大地电磁测深法与双频激电法在水文地质调查中的应用[J]. 物探与化探, 2015, 39(5): 944-947.
[10] 刘成禹, 林毅鹏, 林超群, 刘汗青. 球状孤石在探地雷达探测成果中的表现特征[J]. 物探与化探, 2015, 39(4): 860-866.
[11] 黄理善, 侯一俊, 杨红, 王建超, 赵毅, 张力. 斑岩型铜矿床带条件约束的CSAMT数据精细处理和反演解释[J]. 物探与化探, 2015, 39(4): 817-822.
[12] 赵翠荣, 胡通海, 郭福强. 一种用于混凝土结构探测的探地雷达天线阵列的设计[J]. 物探与化探, 2015, 39(3): 633-636,640.
[13] 蔡连初. 探地雷达圆形测线探测方法[J]. 物探与化探, 2015, 39(3): 637-640.
[14] 邓国文, 王齐仁, 廖建平, 朱云峰. 隧道不良地质现象的探地雷达正演模拟与超前探测[J]. 物探与化探, 2015, 39(3): 651-656.
[15] 张西君, 王永泰, 陈坡. AMT法勘查贵州铝土矿[J]. 物探与化探, 2015, 39(2): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com