Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (4): 774-780    DOI: 10.11720/wtyht.2014.4.26
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
一种四级四阶龙格—库塔时间高阶伪谱法声波方程模拟
杨怀英, 唐小平, 刘宽厚
中国地质调查局 西安地质调查中心, 陕西 西安 710054
A four-stage fourth order Runge-Kutta time high-order pseudospectral method for acoustic equation simulation
YANG Huai-Ying, TANG Xiao-Ping, LIU Kuan-Hou
Xi'an Center of Geological Survey, China Geologicaly Survey, Xi'an 710054, China
全文: PDF(1490 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 龙格—库塔法是常用于求解常微分方程(ODE)的一项技术,该技术具有精度高、稳定性强等特点。笔者以一种新的四级四阶龙格—库塔法为基础,先将其四级计算公式合并为新的两级计算迭代公式,从而达到节约计算内存的目的;再以此为基础推导出声波方程的时间高阶离散形式,并与伪谱法技术相结合,研究四级四阶龙格—库塔时间高阶伪谱法声波高精度、高清晰度的波场模拟技术,进而研究该方法的稳定性与频散特性;最后,分别选取均匀介质、层状介质和透镜体模型进行波场模拟试验。模拟结果表明,该方法具有稳定性强、能有效去除频散,波场清晰度高,能适应更宽的模拟参数范围等特点,是一种高效率的、具有较大应用潜力的波场模拟方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The Runge-Kutta method is a common technology for solving the Ordinary Differential Equations (ODE) and is characterized by high precision, strong stability and some other advantages. In this paper, based on a new four-stage fourth order Runge-Kutta method, the authors first combined the four-stage calculation formula with a new two-stage iteration formula, thus achieving the purpose of saving computational memory. And then, the time high-order discrete form of the acoustic wave equation was derived and, in combination with the pseudospectral method, some researches on the high-accuracy and high-definition acoustic wave field simulation technology of the four-stage fourth order Runge-Kutta time high-order pseudospectral method were carried out, with an investigation of the stability and dispersion of the method. Finally, homogeneous media, layered media and lens model were selected for wave field simulation test. The simulation results show that the four-stage fourth order Runge-Kutta time high-order pseudospectral method has strong stability and high wave field definition and can effectively remove the dispersion and adapt itself to large simulation parameter range, thus being a high efficient wave field simulation method with great application potential.
收稿日期: 2013-07-17      出版日期: 2014-08-10
:  P631.4  
通讯作者: 唐小平,男,四川宜宾人,研究实习员,现工作于中国地质调查局西安地质调查中心,主要从事矿产地球物理勘探方法及技术研究。
作者简介: 杨怀英,女,陕西西安人,工程师,现工作于中国地质调查局西安地质调查中心,主要从事综合地球物理勘探及其方法技术研究。
引用本文:   
杨怀英, 唐小平, 刘宽厚. 一种四级四阶龙格—库塔时间高阶伪谱法声波方程模拟[J]. 物探与化探, 2014, 38(4): 774-780.
YANG Huai-Ying, TANG Xiao-Ping, LIU Kuan-Hou. A four-stage fourth order Runge-Kutta time high-order pseudospectral method for acoustic equation simulation. Geophysical and Geochemical Exploration, 2014, 38(4): 774-780.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2014.4.26      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I4/774
[1] Dan D K,Edip B.Forward modeling by a fourier method[J].Geophysics,1982,47:1402-1412.
[2] Bum K,George A.Two dimension elastic pseudo-spectral modeling of wide-Aperture seismic array date with application to the Wichita uplift Anadarko basin region of southwestern Oklahoma[J].Bull. Seism. Soc. Am.,1990,80:1677-1695.
[3] Tesmer E T, Kosloff D B.A wave propagation simulation in presence of topography[J].Geophysical J Int,1992,108:621-632.
[4] Tesmer E,Kosloff T D.3D elastic modeling with surface topography by a cheby-chev spectral method[J].Geophysics,1994,59(3):464-473.
[5] Rosemary R,Jochen F A.Pseudospectral Chebychev method for the 2D wave equation with domain stretching and absorbing boundary conditions[J].J. comput. physics,1996,124:324-336.
[6] Erding L,Heinz K O.Pseudospectral vs finite difference methods for initial value problems with discontinuous ceocents[J].SLAM.A.SCi.Compute.,1999,20:148-155.
[7] Wang Y B,Takenaka H.A ultidomain approach of the Fourier pseudospectral method using discontinuous grid for elastic wave modeling[J].Earth Planets Space,2001,53:149-158.
[8] Wang Y B,Hiroshi T,Takashi F.Effect of vertical velocity gradient on ground motion in a sediment-filled basin due to incident SV wave[J].Planetary and Space Sciences,2000,52:13-24.
[9] Wang Y B,Hiroshi T,Takashi F.Modelling seismic wave propagation in a two dimensional cylindrical whole-earth model using the pseudospectral method[J].Geophysical.J.Int.,2001,145:689-708.
[10] Zhao Z X,Xu J R,Horiuchi S.Differentiation operation in the wave equation for the pseudo-spectral method with a staggered mesh[J].Earth Planets Space,2001,53:327-332.
[11] Chu C L.Acoustic anisotropic wave modeling using mormalized pseudolapla-cian//Denver:SEG 2010 Annual Meeting,2010.
[12] Sun W B,Sun Z D,Zhu X H.Amplitude preserved VSP reverse time migration for angle-domain CIGs extraction[J].Applied Geophysics,2011,8 (2):141-149.
[13] Gottlieb S,Ketcheson D,Shu C W.Strong stability preserving Runge-Kutta and multistep time discretization[M].World scientific publishing,2011.
[14] Shu C W.Total-variation diminishing time discretizations[J].SIAM Journal on Scientific and Statistical Computing,1988,9:1073-1084.
[15] Yang D H,Chen S,Li J Z.A Runge-Kutta method using high-order interpolation approximation for sloving 2D acoustic and elastic wave equation[J].Journal of seismic exploration,2007,16:331-2353.
[16] 陈山,杨顶辉,邓小英.四阶龙格—库塔方法的一种改进算法及地震波场模拟[J].地球物理学报,2010,53(5):1196-1206.
[17] Fornberg B.A practical guide to pseudospectral methods[M].Cambridge:Cambridge University Press,1996.
[18] Mead J L,Renauty R A.Optimal Runge-Kutta methods for first order pseudo-spectral operators[J].Journal of Computational Physics.1999,152:404-419.
[19] Javidia M,Golbabaib A.Spectral collocation method for parabolic partial differential equations with neumann boundary conditions[J].Applied Mathematical Sciences,2007,1(5):211-218.
[20] Javidia M.Numerical solution for nonlinear PDEs[J].Int.J.Contemp. Math. Sciences,2007,2(8):373-381.
[21] Ogundare B S.On the pseudo-spectral method of solving linear ordinary differential equations[J].Journal of Mathematics and Statistics,2009,5 (2):136-140.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com