Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (2): 331-338    DOI: 10.11720/j.issn.1000-8918.2014.2.22
  生态环境地质调查 本期目录 | 过刊浏览 | 高级检索 |
广州市土壤—大气界面Hg交换通量研究
刘飞1,2, 成杭新2, 杨柯1,2, 赵传冬2, 李括2, 彭敏2, 刘应汉2
1. 中国地质大学 地球科学与资源学院,北京 100083;
2. 中国地质科学院 地球物理地球化学勘查研究所 地球表层碳—汞地球化学循环重点实验室,河北 廊坊 065000
RESEARCH OF MERCURY EXCHANGE FLUX BETWEEN SOIL AND AIR IN GUANGZHOU CITY
LIU Fei1,2, CHENG Hang-xin2, YANG Ke1,2, ZHAO Chuan-dong2, LI Kuo2, PENG Min2, LIU Ying-han2
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
全文: PDF(1286 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 运用Tekran 2537 A与动力学通量箱联测技术,对广州市5个绿化带和草地土壤—大气界面汞交换通量进行了实地监测,结果表明,广州市5个监测点土壤—大气界面汞交换通量密度均值为7.341±9.714 ng·m-2·h-1,不同地点土壤—大气汞交换通量密度有显著差异。汞交换通量密度随土壤汞含量的增加而增大,气象条件显著影响汞交换通量,汞交换通量密度与光照和土壤温度呈显著正相关关系,与土壤pH呈负相关关系,降雨和植被显著影响汞交换通量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The mercury fluxes between soil-air interfaces in 5 lawns of Guangzhou City were monitored by using a dynamic flux chamber coupled with a Tekran 2537A Ambient Mercury Vapor Analyzer. The average value of the mercury fluxes between soil-air interfaces in 5 monitoring points was 7.341±9.714 ng·m-2·h-1. The effects of environmental factors on the mercury fluxes were examined. The soil mercury concentration affected the releasing capability of Hg in soils. The mercury exchange fluxes showed significant positive correlations with total solar radiation intensity and soil temperature and significant negative correlations with the pH values. It was also found that the rainfall and vegetation significantly affected the mercury fluxes.
收稿日期: 2013-11-15      出版日期: 2014-04-10
:  P632  
基金资助:中国地质调查局地质调查项目(1212011220054、1212011220055、12120113001700)
作者简介: 刘飞(1979-),男,硕士,工程师,2006年毕业于中国地质大学(北京)地球化学专业,主要从事环境地球化学评价工作。
引用本文:   
刘飞, 成杭新, 杨柯, 赵传冬, 李括, 彭敏, 刘应汉. 广州市土壤—大气界面Hg交换通量研究[J]. 物探与化探, 2014, 38(2): 331-338.
LIU Fei, CHENG Hang-xin, YANG Ke, ZHAO Chuan-dong, LI Kuo, PENG Min, LIU Ying-han. RESEARCH OF MERCURY EXCHANGE FLUX BETWEEN SOIL AND AIR IN GUANGZHOU CITY. Geophysical and Geochemical Exploration, 2014, 38(2): 331-338.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2014.2.22      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I2/331
[1] Boening D W.Ecological effects,transport,and fate of mercury:a general review[J].Chemosphere, 2000,40:1335-1351.
[2] Moore C,Carpi A.Mechanisms of the emission of mercury from soil:Role of UV radiation[J].Journal of Geophysical Research:Atmospheres,2005,110(D24):D24302.
[3] Gustin M S,Stamenkovic J.Effect of watering and soil moisture on mercury emission from soils[J].Biogeochemistry,2005,76:215-232.
[4] Ericksen J A,Gustin M S,Xin M,et al.Air-soil exchange of mercury from background soils in the United States[J].Science for the Total Environment,2006,366:851-863.
[5] Lindberg S E,Zhang H,Vette A F,et al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils:Part 2-effect of flushing flow rate and verification of a two-resistance exchange interface simulation model[J].Atmospheric Environment,2002,36(5):847-859.
[6] 万奇,冯新斌,郑伟.长白山地区大气气态总汞含量的季节性特征研究[J].环境科学, 2008,29(2):296-298.
[7] 林陶,张成,石孝均,等.不同类型紫色土土/气界面汞释放通量及其影响因素[J].环境科学学报,2008,28(10):1955-1960.
[8] 马生明.城镇及其周边土壤重金属元素异常成因机理[J].物探化探计算技术,2007,29(1):222-225.
[9] 马生明,朱立新,汤丽玲,等.城镇周边土壤Hg异常成因机理研究[J].地质学报, 2007,81(4):570-576.
[10] 成杭新,庄广民,赵传冬,等.北京市土壤Hg污染的区域生态地球化学评价[J].地学前缘,2008,15(5):126-145.
[11] 广州市统计局,国家统计局广州调查队.广州2008年统计年鉴[M].北京:中国统计出版社, 2009.
[12] Ericksen J A,Gustin M S,Xin M,et al.Air-soil exchange of mercury from background soils in the United States[J].Science of the Total Environment,2006,366:851-863.
[13] Gabriel M,Williamson G,Brooks S,et al.Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces[J].Atmospheric Environment,2006,40:4269-4284.
[14] 侯亚敏,冯新斌,王少峰,等.贵阳市及其郊区土壤—大气界面间汞交换通量的初步研究[J].土壤学报,2005,42(1):52-58.
[15] 王起超,方凤满,李志博.长春市汞界面交换通量的研究[J].中国环境科学, 2005,25(4):475-479.
[16] Schroeder W H,Munthe J.Atmospheric mercury:an overview[J].Atmospheric Environment,1998,32:809-822.
[17] Gustin M S,Biester H,Kim C S.Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J].Atmospheric Environment,2002,36:3241-3254.
[18] Engle M A,Gustin M S,Zhang H.Quantifying natural source mercury emissions from the Ivanhoe Mining District,northcentral Nevada,USA[J].Atmospheric Environment,2001,35(23):3987-3997.
[19] Nacht D M,Gustin M S.Mercury emissions from background and altered geologic units throughout Nevada[J].Water,Air and Soil Pollution,2004,151:179-193.
[20] Coolbaugh M F,Gustin M S,Rytuba J J.Annum emissions of mercury to the atmosphere from natural sources in Nevada and California[J].Environmental Geology,2002,42(4):338-349.
[21] Beucher C,Wong W C P,Richard C,et al.Dissolved gaseous mercury formation under UV irradiation of unamended tropical from French Guyana[J].Science of the Total Environment,2002,290:131-138.
[22] Feng X B,Wang S F,Qiu G L,et al.Total gaseous mercury emissions from soil in Guiyang,Guizhou,China[J].Journal of Geophysical Research-Atmospheres,2005,110 (D14306D14).
[23] Ericksen J A,Gustin M S,Schorran D E,et al.Accumulation of atmospheric mercury in forest foliage[J].Atmospheric Environment,2003,37:1613-1622.
[24] Ericksen J A,Gustin M S.Foliar exchange of mercury as a function of soil and air mercury concentrations[J].Science of the Total Environment,2004,324:271-279.
[25] Coolbaugh M F,Gustin M S,Rytuba J J.Annum emissions of mercury to the atmosphere from natural sources in Nevada and California[J].Environmental Geology,2002,42(4):338-349.
[26] 王少锋.汞矿化带土壤/大气界面汞交换通量研究[D].广州:中国科学院研究生院 地球化学研究所,2006.
[27] 冯新斌,陈业材,朱卫国.土壤挥发性汞释放通量的研究[J].环境科学,1996,17(2):20-22.
[28] Gillis A,Miller D R.Some local environmental effects on mercury emission and absorption at a soil surface[J].The Science of Total Environment,2000,260:191-200.
[29] Shcluter K.Review:evaporation mercury from soil:An integration and synthesis of current knowledge[J].Environmental Geology,2000,39(3-4):249-271.
[30] Beucher C,Wong W C P,Richard C,et al.Dissolved gaseous mercury formation under UV irradiation of unamended tropical from French Guyana[J].Science of the Total Environment,2002,290:131-138.
[31] Gustin M S,Biesetr H,Kim C S.Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J].Atmospheric Enviorment,2002,36:3241-3254.
[32] 王少锋,冯新斌,仇广乐,等.贵州滥木厂汞矿区土壤汞的释放通量及影响因素研究[J].地球化学,2004,33(4):405-413.
[33] Lindberg S E,Hanson P J,Meyers T P,et al.Air/surface exchange of mercury vapor over forests-the need for a reassessment of continental biogenic emissions[J].Atmospheric Environment,1998,32(5):895-908.
[34] Ericksen J A,Gustin M S.Foliar exchange of mercury as a function of soil and air mercury concentrations[J].Science of the Total Environment,2004,324:271-279.
[35] Lodenius M,Tulisalo E,Soltanpour G A.Exchange of mercury between atmosphere and vegetation under contaminated conditions[J].The Science of the Total Environment ,2003,304:169-174.
[36] Zhang H H,Poissant L,Xu X H.Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes[J].Atmospheric Environment,2005,39:7481-7493.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com