Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (2): 211-219    DOI: 10.11720/j.issn.1000-8918.2014.2.05
  区域地质调查 本期目录 | 过刊浏览 | 高级检索 |
华南地球化学走廊带碎屑沉积岩W、Sn时空分布特征及其指示意义
赵起超, 迟清华, 王学求, 刘东盛, 刘汉粮, 周建
中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
SPATIAL-TEMPORAL DISTRIBUTION OF W AND Sn IN CLASTIC SEDIMENTARY ROCKS ALONG A TRANSECT ACROSS SOUTH CHINA AND ITS IMPLICATIONS
ZHAO Qi-chao, CHI Qing-hua, WANG Xue-qiu, LIU Dong-sheng, LIU Han-liang, ZHOU Jian
Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, Langfang 065000, China
全文: PDF(1704 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 通过系统的高密度采样,选取了470件来自华南走廊带的细粒碎屑沉积岩,涵盖了中元古到白垩系地层,对其主要元素、微量元素、稀土元素进行了精确分析。研究结果显示,所有样品都存在明显的稀土元素的分异和Eu的负异常,其中(La/Yb)N=10.0,Eu/Eu*=0.67。相对上地壳平均组成,样品明显亏损Ca、Na和Sr,并具有较高的化学风化指数,暗示样品受到了较为强烈的风化作用影响,并且经历了长距离的搬运过程;主要元素和微量元素图解暗示样品的源岩可能包括花岗质、安山质和长英质岩石。样品的地球化学特征显示,样品可以代表较大的源区,并且W、Sn的含量可以反映走廊带上W、Sn分布特征。在走廊带上,W、Sn的含量自东南向西北递减,在江山—绍兴断裂带附近突变,该分布特征与华南地区的钨锡成矿作用非常吻合。碎屑沉积岩中W、Sn的含量明显高于上地壳平均含量,其中W、Sn含量的峰值存在于中元古代—奥陶系地层,而华夏地块从中元古代开始便具有高钨锡含量,可能是该地区形成全世界最大的钨锡成矿省的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:South China is comprised of Yangtze and Cathaysia blocks bounded by the NEE-SWW extending Jiangshan-Shaoxing fault. In order to have a better understanding of the abundance and spatial-temporal distribution of each element in South China, the authors have conducted a geochemical investigation along a 2500 km transect in South China since 2008. 470 samples of fine-grained clastic sedimentary rocks from Middle Proterozoic to Cretaceous in age were collected from the Yangtze block to Cathaysia block at a spacing of 1 site/1~4 km. Analyses of 76 elements have provided us with an insight into the composition and distribution of major and minor elements in sedimentary rocks from Middle Proterozoic to Cretaceous. All the samples are characterized by significant fractionation of LREE and HREE and negative Eu anomalies (Eu/Eu*=0.67 on average). The significant depletion of Ca, Na and Sr and the high CIW values suggest intermediate to intense chemical weathering of the source rocks. Discrimination diagrams involving La, Th, Sc, Co, and Hf indicate a multiple lithological source composed of granitic, andesitic and felsic volcanic rocks. The geochemical features show that the samples were derived from distant and large provenances, and the concentrations of tungsten and tin of the samples can provide robust estimates of the composition of their region. Along the transect, the values of W and Sn decrease from southeast to northwest and descend abruptly near the Jiangshan-Shaoxing fault. The distribution of W and Sn matches well with the characteristics of W-Sn mineralization in the Cathaysia Block. The Cathaysia Block has high W and Sn relative to UCC, and peak values are existent in the Middle Proterozoic-Ordovician rocks, reflecting the high background in this block, which might explain the reason for the formation of the world's largest W, Sn metallogenic province.
收稿日期: 2013-11-30      出版日期: 2014-04-10
:  P632  
基金资助:国土资源部行业专项(SinoProbe-04)
作者简介: 赵起超(1987-),男,地球化学专业博士研究生。
引用本文:   
赵起超, 迟清华, 王学求, 刘东盛, 刘汉粮, 周建. 华南地球化学走廊带碎屑沉积岩W、Sn时空分布特征及其指示意义[J]. 物探与化探, 2014, 38(2): 211-219.
ZHAO Qi-chao, CHI Qing-hua, WANG Xue-qiu, LIU Dong-sheng, LIU Han-liang, ZHOU Jian. SPATIAL-TEMPORAL DISTRIBUTION OF W AND Sn IN CLASTIC SEDIMENTARY ROCKS ALONG A TRANSECT ACROSS SOUTH CHINA AND ITS IMPLICATIONS. Geophysical and Geochemical Exploration, 2014, 38(2): 211-219.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2014.2.05      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I2/211
[1] McLennan S M.Relationships between the trace element composition of sedimentary rocks and upper continental crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4).
[2] Sims K W W,Newsom H E,Gladney E S.Chemical fractionation during formation of the Earth's core and continental crust: clues from As,Sb,W,and Mo[G]//Newsom H E,Jones J H.Origin of the Earth,Oxford University Press,1990,1:291-317.
[3] Taylor S R,McLennan S M,The continental crust: its composition and evolution[M].1985.Blackwell,Oxford.
[4] 王学求,谢学锦,张本仁,等.地壳全元素探测——构建 "化学地球"[J].地质学报,2010,84(006): 854-864.
[5] Zhou M F,Yan D P,Kennedy A K,et al.SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J].Earth and Planetary Science Letters,2002,196(1): 51-67.
[6] Yu J,Zhou X,O'Reilly Y S,et al.Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains[J].Chinese Science Bulletin,2005,50(18): 2080-2089.
[7] Peng J T,Hu R Z,Burnard P G.Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan,China): the potential of calcite as a geochronometer[J].Chemical Geology,2003,200(1): 129-136.
[8] Peng J,Zhou M F,Hu R,et al.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China[J].Mineralium Deposita,2006,41(7): 661-669.
[9] Mao J W,Pirajno F,Cook N.Mesozoic metallogeny in East China and corresponding geodynamic settings—an introduction to the special issue[J].Ore Geology Reviews,2011, 43(1): 1-7.
[10] 华仁民,李光来,张文兰,等.华南钨和锡大规模成矿作用的差异及其原因初探 [J].矿床地质,2010,29(1): p.9-23.
[11] Rudnick R L,Gao S.Composition of the continental crust[G]//Rudnick R L.The Crust: Treatise on geochemistry,Oxford: Elsevier,2003,(3): 1-64.
[12] Garrels R M,Mackenzie F T.Evolution of sedimentary rocks[M].New York: Norton,1971.
[13] XIE X J.Perspective.Analytical requirements in international geochemical mapping[J].Analyst,1995,120(5): 1497-1504.
[14] 地球化学标准参考样研究组,地球化学标准样的研制与分析方法 GSD1-8(中华人民共和国地质矿产部地质专报,九分析测试与综合利用,第二号)[S].北京:地质出版社,1986:1-359.
[15] 地球化学标准参考样研究组.地球化学标准样的研制与分析方法 GSR1-6,GSS1-8,GSD9-12[M].北京:地质出版社, 1987.
[16] Herron M M.Geochemical classification of terrigenous sands and shales from core or log data[J].Journal of Sedimentary Research,1988,58(5): 820-829.
[17] Young G M,Nesbitt H W.Processes controlling the distribution of Ti and Al in weathering profiles,siliciclastic sediments and sedimentary rocks[J].Journal of Sedimentary Research,1998,68(3): 448-455.
[18] Anders E,Grevesse N.Abundances of the elements: Meteoritic and solar[J].Geochimica et Cosmochimica Acta,1989,53(1): 197-214.
[19] Cullers R L,Bock B,Guidotti C.Elemental distributions and neodymium isotopic compositions of Silurian metasediments,western Maine,USA: redistribution of the rare earth elements[J].Geochimica et Cosmochimica Acta,1997,61(9): 1847-1861.
[20] Gao S,Wedepohl K H.The negative Eu anomaly in Archean sedimentary rocks: implications for decomposition,age and importance of their granitic sources[J].Earth and Planetary Science Letters,1995,133(1): 81-94.
[21] Gao S,Ling W,Qiu Y,et al.Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J].Geochimica et Cosmochimica Acta,1999,63(13): 2071-2088.
[22] McLennan S M.Weathering and global denudation[J].The Journal of Geology,1993: 295-303.
[23] Nesbitt H W,Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885): 715-717.
[24] Harnois L.The CIW index: a new chemical index of weathering[J].Sedimentary Geology,1988,55(3): 319-322.
[25] Bock B,McLennan S M,Hanson G N.Geochemistry and provenance of the middle Ordovician Austin Glen member (Normanskill formation) and the Taconian orogeny in New England[J].Sedimentology,1998,45(4): 635-655.
[26] Bhatia M R,Crook K A W.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contributions to mineralogy and petrology,1986,92(2): 181-193.
[27] Cullers R L,Barrett T,Carlson R,et al.Rare-earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains,Colorado,USA[J].Chemical geology,1987,63(3): 275-297.
[28] Cullers R L,Basu A,Suttner L J.Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith,Montana,USA[J].Chemical Geology,1988,70(4): 335-348.
[29] Condie K C,Wronkiewicz D J.The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution[J].Earth and Planetary Science Letters,1990,97(3): 256-267.
[30] Wronkiewicz D J,Kent C C.Geochemistry and provenance of sediments from the Pongola Supergroup,South Africa: evidence for a 3.0-Ga-old continental craton[J].Geochimica et Cosmochimica Acta,1989,53(7): 1537-1549.
[31] Cullers R L.The controls on the major and trace element variation of shales,siltstones,and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas,USA[J].Geochimica et Cosmochimica Acta,1994,58(22): 4955-4972.
[32] Cullers R L,Podkovyrov V N.Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia,Russia: implications for mineralogical and provenance control,and recycling[J].Precambrian Research,2000,104(1): 77-93.
[33] Cullers R L.The geochemistry of shales,siltstones and sandstones of Pennsylvanian-Permian age,Colorado,USA: implications for provenance and metamorphic studies[J].Lithos,2000,51(3): 181-203.
[34] Gu X X,Liu J M,Zheng M H,et al.Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China: geochemical evidence[J].Journal of Sedimentary Research,2002,72(3): 393-407.
[35] Floyd P A,Leveridge B E.Tectonic environment of the Devonian Gramscatho basin,south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J].Journal of the Geological Society,1987,144(4): 531-542.
[36] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J].Geological Society,London,Special Publications,1989,42(1): 313-345.
[37] Gao S,Luo T C,Zhang B R,et al.Chemical composition of the continental crust as revealed by studies in East China[J].Geochimica et Cosmochimica Acta,1998,62(11): 1959-1975.
[38] 陈毓川.华南与燕山期花岗岩有关的稀土,稀有,有色金属矿床成矿系列[J].矿床地质,1983,2(2): 15-24.
[39] 毛景文.锡在地球中初始富集与锡矿床成矿关系[J].石家庄经济学院学报,1991(1):4.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com