Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (1): 145-150    DOI: 10.11720/j.issn.1000-8918.2014.1.27
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演
严波, 刘颖, 叶益信
中国海洋大学 海底科学与探测技术教育部重点实验室, 山东 青岛 266100
2.5D DIRECT CURRENT RESISTIVITY ADAPTIVE FINITE-ELEMENT NUMERICAL MODELING BASED ON DUAL WEIGHTED POSTERIORI ERROR ESTIMATION
YAN Bo, LIU Ying, YE Yi-xin
Key Laboratory for Submarine Science and Exploration Technology of Ministry of Education, Ocean University of China, Qingdao 266100, China
全文: PDF(1135 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用易于模拟复杂地形起伏和倾斜界面的非结构三角单元剖分网格,并利用对偶加权后验误差估计指导网格自动细化过程,实现了2.5维直流电阻率法自适应有限元数值模拟。在实例模型分析中,分别计算了层状模型和垂直岩脉模型的直流电阻率响应,并与其解析解进行了比较。对比结果表明,该算法所得数值解精度很高,解的相对误差小于0.5%。最后,计算了起伏地形2.5维地电模型视电阻率异常,并利用比较法进行了地形改正。地形改正结果与水平地形时的结果对比表明,比较法可以较好地消除地形影响,突出局部地质体异常。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:2.5D DC resistivity modeling was realized by adaptive finite-element numerical simulation algorithm. This algorithm uses unstructured triangular element that is easy to simulate complex topography and inclined interface to subdivide mesh, and utilizes dual weighted posteriori error estimation guide mesh refining process. In the instance model analysis, the authors calculated the DC resistivity response of the layered model and the vertical dike model, which were compared with their analytical solutions respectively. The results show that the numerical solution for this algorithm has high accuracy,and the relative error of the numerical solution is less than 5 percent. Finally, the authors calculated 2.5D geoelectric model apparent resistivity anomaly of undulate topography and corrected the undulate topography by using the comparative method. The contrast between topographic correction results and level terrain results show that the comparative method is effective in eliminating the terrain effect and giving prominence to local geological anomalies.
收稿日期: 2012-12-17      出版日期: 2014-02-10
:  P631  
基金资助:国家自然科学基金(41204055,41130420)
作者简介: 严波(1986),男,湖南常德人,硕士,从事海洋电磁场正演方法研究。
引用本文:   
严波, 刘颖, 叶益信. 基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演[J]. 物探与化探, 2014, 38(1): 145-150.
YAN Bo, LIU Ying, YE Yi-xin. 2.5D DIRECT CURRENT RESISTIVITY ADAPTIVE FINITE-ELEMENT NUMERICAL MODELING BASED ON DUAL WEIGHTED POSTERIORI ERROR ESTIMATION. Geophysical and Geochemical Exploration, 2014, 38(1): 145-150.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2014.1.27      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I1/145
[1] 徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994:183-194.
[2] 熊斌,阮百尧,罗延钟.复杂地形条件下直流电阻率异常三维数值模拟研究[J].地质与勘探,2003,39(4):60-64.
[3] 强建科,罗延钟.三维地形直流电阻率有限元法模拟[J].地球物理学报,2007,50(5):1606-1613.
[4] Sasaki Y. 3D resistivity inversion using the finite-element method[J].Geophysics, 1994, 59:1839-1848.
[5] Tang J T, Wang F Y, Ren Z Y. 2.5D DC resistivity modeling by adaptive finite-element method with unstructured triangulation[J].Geophs, 2010, 53(3):708-716.
[6] 王飞燕. 基于非结构化网格的2.5D直流电祖率法自适应有限元数值模拟.长沙:中南大学,2009.
[7] Ovall J S. Duality-based adaptive refinement for elliptic PDEs.San Diego:University of California, 2004.
[8] Ovall J S. Asymptotically exact functional error estimators based on super convergent gradient recovery[J].Numeriche Mathematik,2006,102:543-558.
[9] 罗延钟,张贵青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987:67-69.
[10] 阮百尧,徐世浙.电导率分块线性变化二维地电断面电阻率测深有限元数值模拟[J].地球科学:中国地质大学学报,1998,23(3):303-307.
[11] Li Y G, Kerry K. 2D marine controlled-source electromagnetic modeling:Part 1-An adaptive finite-element algorithm[J].Geophysics,2007,72(2):51-62.
[12] Li Y G, Josef P. Adaptive finite element modeling of two-dimensional magnetotelluric fields in general anisotropic media[J].Geophys J Int, 2008,175:942-954.
[13] Bank R E, Xu J C.Asymptotically exact a posteriori error estimators, Part Ⅱ:General unstructured grids[J].SIAM Journal on numerical analysis, 2003,41:2313-2332.
[14] Babuska I, Ihlenburg F, Stroubousli T, et al. A posteriori error estimation for finite element solution of Helmholtz equation.ⅡEstimation of the pollution error[J].International Journal for Numerical Methods in Engineering, 1997, 41:3883-3900.
[15] Oden J, Feng Y, Prughomme S. Local and pollution error estimation for stokesian flows[J].International Journal for Numerical Methods in Fluids, 1998, 27:33-39.
[16] 刘兴国.电法勘探原理与方法[M].北京:地质出版社,2003:48-52.
[17] Pidlisecky A, Knight R. FW2_5D:A MATLAB 2.5D electrical resistivity modeling code.Computers & Geosciences, 2008, 34:1645-803.
[18] Telford W, Geldart L P, Sheriff R E. Applied geophysics second edition[M].Cambridge University Press, 1990:559-561.
[19] 刘海飞,阮百尧,吕玉增.直流激电测深二维反演的若干问题研究[J].物探与化探,2007,31(1):47-50.
[20] 段本春, 朱永盛.最优化波数在点源二维有限元正演计算中的应用[J].物探与化探,1994,18(3):186-191.
[21] 李金铭.地电场与电法勘探[M].北京:地质出版社,2005:185-190.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com