Please wait a minute...
E-mail Alert Rss
 
物探与化探  2013, Vol. 37 Issue (4): 633-639    DOI: 10.11720/j.issn.1000-8918.2013.4.12
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
井中三分量磁测的梯度张量欧拉反褶积及应用
刘天佑1, 高文利2, 冯杰2, 习宇飞1, 欧洋1
1. 中国地质大学 地球物理与空间信息学院, 湖北 武汉 430074;
2. 中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
EULER DECONVOLUTION OF BOREHOLE THREE-COMPONENT MAGNETIC GRADIENT TENSOR AND ITS APPLICATION
LIU Tian-you1, GAO Wen-li2, FENG Jie2, XI Yu-fei1, OU Yang1
1. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China;
2. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
全文: PDF(1278 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

2006年The Leading Edge第一期详细介绍了磁力梯度张量的理论、仪器与野外试验结果,磁力梯度张量技术已成为磁力勘探新的热点之一。笔者介绍了磁力梯度张量的概念及优点;利用频率域与空间域方法把井中三分量磁测资料换算磁力梯度张量;根据联合反演原理与欧拉反褶积方法,推导了磁力梯度张量的联合反演方程,该方程通过权函数矩阵可以灵活对一个或多个分量反演,比文献[14]方法更具普遍性。理论模型结果表明,磁力梯度张量反演方法对井底异常的定位准确,对于3D模型,一口钻井的资料也能较好确定空间位置。将该方法用于湖北大冶铁矿18-2井三分量磁测资料的解释,得出磁力梯度张量的欧拉解集中在100~180 m与500~550 m两个深度,与钻探结果十分吻合。该结果证实了地质上关于铁矿体分布具两个台阶的推论,对大冶铁矿的深部找矿具有实际意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Since the paper published in The Leading Edge (No. 1 issue of 2006 ) described in detail the theory, equipments and outdoor test results of magnetic gradient tensor, this technology has become one of the hot topics of magnetic prospecting methods. This paper describes the concepts and advantages of the magnetic gradient tensor. Both frequency and spatial domain methods are used to transfer borehole three-component magnetic data to magnetic gradient tensor. According to the joint inversion principle and Euler deconvolution, the joint inversion equations for magnetic gradient tensor are deduced, which enable us to flexibly inverse one or more components based on a weighted function matrix, and the technology is more common than the method mentioned in Reference [14]. The simulated results of synthetic models reveal that the magnetic gradient tensor inversion method can be accurately employed to locate the magnetic body according to borehole bottom anomalies. Concerning 3D models, only one borehole magnetic data can calculate the locations accurately. Moreover, the method was applied to interpreting the three-component magnetic data of No.18-2 drill in Daye iron mining area, Hubei province, and the results indicate that the deconvolution solutions of magnetic gradient tensor are concentrated on the 100 to 180 m and 500 to 550 m elevations that are in accordance with the drilling results. The result confirms the geological inference that there are two steps of iron ore bodies, which has practical significance in search for ore bodies at deeper locations in Daye iron mining area.

收稿日期: 2012-03-30      出版日期: 2013-08-10
:  P631.8  
基金资助:

国土资源部"十二五"项目(1212011120195);国土资源部公益性行业科研专项(20091101703)

作者简介: 刘天佑(1945-),教授(博导),从事重磁勘探、地球物理数据处理的教学与科研工作,Email:liuty@cug.edu.cn。
引用本文:   
刘天佑, 高文利, 冯杰, 习宇飞, 欧洋. 井中三分量磁测的梯度张量欧拉反褶积及应用[J]. 物探与化探, 2013, 37(4): 633-639.
LIU Tian-you, GAO Wen-li, FENG Jie, XI Yu-fei, OU Yang. EULER DECONVOLUTION OF BOREHOLE THREE-COMPONENT MAGNETIC GRADIENT TENSOR AND ITS APPLICATION. Geophysical and Geochemical Exploration, 2013, 37(4): 633-639.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2013.4.12      或      https://www.wutanyuhuatan.com/CN/Y2013/V37/I4/633

[1] Schmidt P W, Clark D A. The magnetic gradient tensor: Its properties and uses in source characterization[J].The Leading Edge. 2006,25(1):75-78.

[2] Foss C. Improvements in source resolution that can be expected from inversion of magnetic field tensor data[J].The Leading Edge. 2006,25(1): 81-84.

[3] Stolz R, Chwala A, Zakosarenko V, et al. SQUID technology for geophysical exploration[C]//76th SEG Technical Program Expanded Abstracts, 2006:894-898.

[4] Stolz R, Zakosarenko V, Schulz M,et al. Magnetic full-tensor SQUID gradiometer system for geophysical applications[J].The Leading Edge,2006,25(2):178~180.

[5] Jeffrey J T, Doll W E. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[C]//74th SEG Technical Program Expanded Abstracts,2004:798-801.

[6] Schmidt P, David C, Leslie K. GETMAG—a SQUID magnetic tensor gradiometer for mineral and oil exploration[J].Exploration Geophysics. 2004,35:297-305.

[7] 史辉,刘天佑. 利用欧拉反褶积法估计二度磁性体深度与位置[J]. 物探与化探,2005,29(3):230~ 233..

[8] 习宇飞,刘天佑,杨坤彪,等.欧拉反褶积法用于井中磁测数据反演与解释[J].工程地球物理学报,2008,5(2):181-186.

[9] 张季生,高锐,李秋生,等. 欧拉反褶积与解析信号相结合的位场反演方法[J]. 地球物理学报, 2011, 54(6): 1634-1641.

[10] Zhang C Y, Mushayandebvu M F,Reid A B. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000,65(2):512-520.

[11] 管志宁. 地磁场与磁力勘探[M].北京:地质出版社,2005.

[12] Fedi M, Florio G, A stable downward continuation by using the ISVD method. Geophys[J]. J Int, 2002, 151: 146-156.

[13] Hood P. Gradient measurement in aeromagnetic surveying[J]. Geophysics,1965, 30: 891-902.

[14] 姚长利,管志宁,吴其斌,等. 欧拉反演方法分析及实用技术改进[J]. 物探与化探,2004,28(2):150-155.

[1] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[2] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[3] 丁永浩, 任莉. 中东T油田灰岩储层自然伽马能谱测井的应用[J]. 物探与化探, 2014, 38(5): 890-894.
[4] 李冰, 王志博, 乔扬, 屈进红. 航空重力起伏飞行中飞机姿态对测量数据影响分析[J]. 物探与化探, 2014, 38(5): 1024-1028.
[5] 李水平, 王建光, 程华, 白德胜, 张勇, 谢彦军. 钻孔岩芯岩(矿)石磁化率参数特征并用于地层岩性划分[J]. 物探与化探, 2013, 37(5): 775-778.
[6] 林振洲, 李洋, 高文利, 孔广胜, 孙尚哲. 祁连山冻土区天然气水合物层位测井物性分析[J]. 物探与化探, 2013, 37(5): 834-838.
[7] 欧洋, 刘天佑, 高文利, 冯杰, 邱礼泉. 井中三分量磁测的模量反演[J]. 物探与化探, 2013, 37(4): 664-669.
[8] 鲍世才, 马彪. 地球物理测井在岩盐矿勘探中的应用[J]. 物探与化探, 2013, 37(3): 449-452.
[9] 赵莹. 小波分析在松辽盆地北部高分辨率层序地层学中的应用[J]. 物探与化探, 2013, 37(2): 310-313.
[10] 熊杰, 邹长春, 刘志友. MapGIS二次开发在井中三分量磁测软件中的应用[J]. 物探与化探, 2012, 36(3): 479-484.
[11] 方战杰, 孟小红. 利用储层饱和度仪双探测器测井资料反演持油率[J]. 物探与化探, 2012, 36(3): 499-502.
[12] 涂继辉, 李长文, 余厚全, 邹伟, 余春昊, 李国军. 超声电视测井图像中异常点剔除算法[J]. 物探与化探, 2012, 36(2): 307-311.
[13] 刘冬节. 利用井中三分量磁测异常垂直分量及水平分量模差对旁侧异常进行二维拟合计算推断解释[J]. 物探与化探, 2011, 35(5): 617-619.
[14] 马战军, 王小冬. 反褶积法在花岗岩型铀矿床伽马测井资料解释中的几点认识[J]. 物探与化探, 2011, 35(5): 630-633.
[15] 张莹, 潘保芝. 支持向量机与微电阻率成像测井识别火山岩岩性[J]. 物探与化探, 2011, 35(5): 634-638,642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com